Cargando…
Every which way? On predicting tumor evolution using cancer progression models
Successful prediction of the likely paths of tumor progression is valuable for diagnostic, prognostic, and treatment purposes. Cancer progression models (CPMs) use cross-sectional samples to identify restrictions in the order of accumulation of driver mutations and thus CPMs encode the paths of tumo...
Autores principales: | Diaz-Uriarte, Ramon, Vasallo, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693785/ https://www.ncbi.nlm.nih.gov/pubmed/31374072 http://dx.doi.org/10.1371/journal.pcbi.1007246 |
Ejemplares similares
-
Conditional prediction of consecutive tumor evolution using cancer progression models: What genotype comes next?
por: Diaz-Colunga, Juan, et al.
Publicado: (2021) -
Unforgettable in every way
por: Mizumoto, Junki, et al.
Publicado: (2021) -
Estimating the predictability of cancer evolution
por: Hosseini, Sayed-Rzgar, et al.
Publicado: (2019) -
Identifying restrictions in the order of accumulation of mutations during tumor progression: effects of passengers, evolutionary models, and sampling
por: Diaz-Uriarte, Ramon
Publicado: (2015) -
Cancer progression models and fitness landscapes: a many-to-many relationship
por: Diaz-Uriarte, Ramon
Publicado: (2018)