Cargando…
High-efficiency genomic editing in Epstein-Barr virus-transformed lymphoblastoid B cells using a single-stranded donor oligonucleotide strategy
While human lymphoblastoid cell lines represent a valuable resource for population genetic studies, they have usually been regarded as difficult for CRISPR-mediated genomic editing because of very inefficient DNA transfection and retroviral or lentiviral transduction in these cells, which becomes a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694121/ https://www.ncbi.nlm.nih.gov/pubmed/31428700 http://dx.doi.org/10.1038/s42003-019-0559-3 |
Sumario: | While human lymphoblastoid cell lines represent a valuable resource for population genetic studies, they have usually been regarded as difficult for CRISPR-mediated genomic editing because of very inefficient DNA transfection and retroviral or lentiviral transduction in these cells, which becomes a substantial problem when multiple constructs need to be co-expressed. Here we describe a protocol using a single-stranded donor oligonucleotide strategy for ‘scarless’ editing in lymphoblastoid cells, yielding 12/60 (20%) of clones with homology-directed recombination, when rates of <5–10% are frequently typical for many other cell types. The protocol does not require the use of lentiviruses or stable transfection, permitting lymphoblastoid cell lines to be used for CRISPR-mediated genomic targeting and screening in population genetic studies. |
---|