Cargando…
Deploying Clinical Process Improvement Strategies to Reduce Motion Artifacts and Expiratory Phase Scanning in Chest CT
We hypothesized that clinical process improvement strategies can reduce frequency of motion artifacts and expiratory phase scanning in chest CT. We reviewed 826 chest CT to establish the baseline frequency. Per clinical process improvement guidelines, we brainstormed corrective measures and priority...
Autores principales: | Doda Khera, Ruhani, Singh, Ramandeep, Homayounieh, Fatemeh, Stone, Evan, Redel, Travis, Savage, Cristy A., Stockton, Katherine, Shepard, Jo-Anne O., Kalra, Mannudeep K., Digumarthy, Subba R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694170/ https://www.ncbi.nlm.nih.gov/pubmed/31413297 http://dx.doi.org/10.1038/s41598-019-48423-7 |
Ejemplares similares
-
Use of radiomics to differentiate left atrial appendage thrombi and mixing artifacts on single-phase CT angiography
por: Ebrahimian, Shadi, et al.
Publicado: (2021) -
Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography
por: Chao, Hanqing, et al.
Publicado: (2021) -
Prediction of burden and management of renal calculi from whole kidney radiomics: a multicenter study
por: Homayounieh, Fatemeh, et al.
Publicado: (2020) -
Can fully iterative reconstruction technique enable routine abdominal CT at less than 1 mSv?
por: Tabari, Azadeh, et al.
Publicado: (2019) -
Deep learning in chest radiography: Detection of findings and presence of change
por: Singh, Ramandeep, et al.
Publicado: (2018)