Cargando…
The undeveloped properties of GABA neurons in the ventral tegmental area promote energy intake for growth in juvenile rats
Juvenile animals show higher energy intake (EI) per body weight (BW) to meet the energy requirements for growth. However, the underlying mechanisms that induce high EI/BW in juvenile animals remain unknown. The EI from a control diet (CD) and high fat diet (HFD), as well as BW changes were compared...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694191/ https://www.ncbi.nlm.nih.gov/pubmed/31413349 http://dx.doi.org/10.1038/s41598-019-48336-5 |
Sumario: | Juvenile animals show higher energy intake (EI) per body weight (BW) to meet the energy requirements for growth. However, the underlying mechanisms that induce high EI/BW in juvenile animals remain unknown. The EI from a control diet (CD) and high fat diet (HFD), as well as BW changes were compared between juvenile (3 weeks old) and adult (8 weeks old) rats. BW gain and EI were increased in the HFD-fed adult rats compared to the CD-fed adult rats. However, in the juvenile rats, there were no differences in BW gain and EI between the CD-fed and HFD-fed groups. The locomotor activity was significantly increased in HFD group compared with the CD group in juvenile, but not in adult rats. Gamma-aminobutyric acid (GABA) neurons in the VTA were found to remain undeveloped with less GABAergic input into dopamine neurons in the juvenile rats. The deletion of the VTA GABA neurons in the adult rats significantly increased CD consumption, but showed almost no change in HFD consumption. These data suggest that undeveloped properties of VTA GABA neurons in juvenile rats can promote higher EI regardless of high or less palatable feeding, and contribute to growth promotion. |
---|