Cargando…
Indirect association and ranking hypotheses for literature based discovery
BACKGROUND: Literature Based Discovery (LBD) produces more potential hypotheses than can be manually reviewed, making automatically ranking these hypotheses critical. In this paper, we introduce the indirect association measures of Linking Term Association (LTA), Minimum Weight Association (MWA), an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694578/ https://www.ncbi.nlm.nih.gov/pubmed/31416434 http://dx.doi.org/10.1186/s12859-019-2989-9 |
_version_ | 1783443853903134720 |
---|---|
author | Henry, Sam McInnes, Bridget T. |
author_facet | Henry, Sam McInnes, Bridget T. |
author_sort | Henry, Sam |
collection | PubMed |
description | BACKGROUND: Literature Based Discovery (LBD) produces more potential hypotheses than can be manually reviewed, making automatically ranking these hypotheses critical. In this paper, we introduce the indirect association measures of Linking Term Association (LTA), Minimum Weight Association (MWA), and Shared B to C Set Association (SBC), and compare them to Linking Set Association (LSA), concept embeddings vector cosine, Linking Term Count (LTC), and direct co-occurrence vector cosine. Our proposed indirect association measures extend traditional association measures to quantify indirect rather than direct associations while preserving valuable statistical properties. RESULTS: We perform a comparison between several different hypothesis ranking methods for LBD, and compare them against our proposed indirect association measures. We intrinsically evaluate each method’s performance using its ability to estimate semantic relatedness on standard evaluation datasets. We extrinsically evaluate each method’s ability to rank hypotheses in LBD using a time-slicing dataset based on co-occurrence information, and another time-slicing dataset based on SemRep extracted-relationships. Precision and recall curves are generated by ranking term pairs and applying a threshold at each rank. CONCLUSIONS: Results differ depending on the evaluation methods and datasets, but it is unclear if this is a result of biases in the evaluation datasets or if one method is truly better than another. We conclude that LTC and SBC are the best suited methods for hypothesis ranking in LBD, but there is value in having a variety of methods to choose from. |
format | Online Article Text |
id | pubmed-6694578 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-66945782019-08-19 Indirect association and ranking hypotheses for literature based discovery Henry, Sam McInnes, Bridget T. BMC Bioinformatics Methodology Article BACKGROUND: Literature Based Discovery (LBD) produces more potential hypotheses than can be manually reviewed, making automatically ranking these hypotheses critical. In this paper, we introduce the indirect association measures of Linking Term Association (LTA), Minimum Weight Association (MWA), and Shared B to C Set Association (SBC), and compare them to Linking Set Association (LSA), concept embeddings vector cosine, Linking Term Count (LTC), and direct co-occurrence vector cosine. Our proposed indirect association measures extend traditional association measures to quantify indirect rather than direct associations while preserving valuable statistical properties. RESULTS: We perform a comparison between several different hypothesis ranking methods for LBD, and compare them against our proposed indirect association measures. We intrinsically evaluate each method’s performance using its ability to estimate semantic relatedness on standard evaluation datasets. We extrinsically evaluate each method’s ability to rank hypotheses in LBD using a time-slicing dataset based on co-occurrence information, and another time-slicing dataset based on SemRep extracted-relationships. Precision and recall curves are generated by ranking term pairs and applying a threshold at each rank. CONCLUSIONS: Results differ depending on the evaluation methods and datasets, but it is unclear if this is a result of biases in the evaluation datasets or if one method is truly better than another. We conclude that LTC and SBC are the best suited methods for hypothesis ranking in LBD, but there is value in having a variety of methods to choose from. BioMed Central 2019-08-15 /pmc/articles/PMC6694578/ /pubmed/31416434 http://dx.doi.org/10.1186/s12859-019-2989-9 Text en © The Author(s) 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Methodology Article Henry, Sam McInnes, Bridget T. Indirect association and ranking hypotheses for literature based discovery |
title | Indirect association and ranking hypotheses for literature based discovery |
title_full | Indirect association and ranking hypotheses for literature based discovery |
title_fullStr | Indirect association and ranking hypotheses for literature based discovery |
title_full_unstemmed | Indirect association and ranking hypotheses for literature based discovery |
title_short | Indirect association and ranking hypotheses for literature based discovery |
title_sort | indirect association and ranking hypotheses for literature based discovery |
topic | Methodology Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694578/ https://www.ncbi.nlm.nih.gov/pubmed/31416434 http://dx.doi.org/10.1186/s12859-019-2989-9 |
work_keys_str_mv | AT henrysam indirectassociationandrankinghypothesesforliteraturebaseddiscovery AT mcinnesbridgett indirectassociationandrankinghypothesesforliteraturebaseddiscovery |