Cargando…

Efficient virus-induced gene silencing in Hibiscus hamabo Sieb. et Zucc. using tobacco rattle virus

BACKGROUND: Hibiscus hamabo Sieb. et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation H. hamabo is currently inefficient and laborious, restricting gene functional studies on this species...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Zhiquan, Xu, Xiaoyang, Ni, Longjie, Guo, Jinbo, Gu, Chunsun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6694781/
https://www.ncbi.nlm.nih.gov/pubmed/31423365
http://dx.doi.org/10.7717/peerj.7505
Descripción
Sumario:BACKGROUND: Hibiscus hamabo Sieb. et Zucc. is a semi-mangrove plant used for the ecological restoration of saline-alkali land, coastal afforestation and urban landscaping. The genetic transformation H. hamabo is currently inefficient and laborious, restricting gene functional studies on this species. In plants, virus-induced gene silencing provides a pathway to rapidly and effectively create targeted gene knockouts for gene functional studies. METHODS: In this study, we tested the efficiency of a tobacco rattle virus vector in silencing the cloroplastos alterados 1 (CLA1) gene through agroinfiltration. RESULTS: The leaves of H. hamabo showed white streaks typical of CLA1 gene silencing three weeks after agroinfiltration. In agroinfiltrated H. hamabo plants, the CLA1 expression levels in leaves with white streaks were all significantly lower than those in leaves from mock-infected and control plants. CONCLUSIONS: The system presented here can efficiently silence genes in H. hamabo and may be a powerful tool for large-scale reverse-genetic analyses of gene functions in H. hamabo.