Cargando…
Predicting kinase inhibitors using bioactivity matrix derived informer sets
Prediction of compounds that are active against a desired biological target is a common step in drug discovery efforts. Virtual screening methods seek some active-enriched fraction of a library for experimental testing. Where data are too scarce to train supervised learning models for compound prior...
Autores principales: | Zhang, Huikun, Ericksen, Spencer S., Lee, Ching-pei, Ananiev, Gene E., Wlodarchak, Nathan, Yu, Peng, Mitchell, Julie C., Gitter, Anthony, Wright, Stephen J., Hoffmann, F. Michael, Wildman, Scott A., Newton, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695194/ https://www.ncbi.nlm.nih.gov/pubmed/31381559 http://dx.doi.org/10.1371/journal.pcbi.1006813 |
Ejemplares similares
-
Practical Model Selection for Prospective Virtual
Screening
por: Liu, Shengchao, et al.
Publicado: (2018) -
Evaluating Scalable
Supervised Learning for Synthesize-on-Demand
Chemical Libraries
por: Alnammi, Moayad, et al.
Publicado: (2023) -
DBSI: DNA-binding site identifier
por: Zhu, Xiaolei, et al.
Publicado: (2013) -
A screen for kinase inhibitors identifies antimicrobial imidazopyridine aminofurazans as specific inhibitors of the Listeria monocytogenes PASTA kinase PrkA
por: Schaenzer, Adam J., et al.
Publicado: (2017) -
Engineering Selectivity for Reduced Toxicity of Bacterial
Kinase Inhibitors Using Structure-Guided Medicinal Chemistry
por: Wlodarchak, Nathan, et al.
Publicado: (2021)