Cargando…
rawMSA: End-to-end Deep Learning using raw Multiple Sequence Alignments
In the last decades, huge efforts have been made in the bioinformatics community to develop machine learning-based methods for the prediction of structural features of proteins in the hope of answering fundamental questions about the way proteins function and their involvement in several illnesses....
Autores principales: | Mirabello, Claudio, Wallner, Björn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695225/ https://www.ncbi.nlm.nih.gov/pubmed/31415569 http://dx.doi.org/10.1371/journal.pone.0220182 |
Ejemplares similares
-
End-to-end learning of multiple sequence alignments with differentiable Smith–Waterman
por: Petti, Samantha, et al.
Publicado: (2022) -
InterLig: improved ligand-based virtual screening using topologically independent structural alignments
por: Mirabello, Claudio, et al.
Publicado: (2020) -
cpxDeepMSA: A Deep Cascade Algorithm for Constructing Multiple Sequence Alignments of Protein–Protein Interactions
por: Liu, Zi, et al.
Publicado: (2022) -
DeepECA: an end-to-end learning framework for protein contact prediction from a multiple sequence alignment
por: Fukuda, Hiroyuki, et al.
Publicado: (2020) -
learnMSA: learning and aligning large protein families
por: Becker, Felix, et al.
Publicado: (2022)