Cargando…
An empirical assessment of research practices across 163 clinical trials of tumor-bearing companion dogs
Comparative clinical trials of domestic dogs with spontaneously-occurring cancers are increasingly common. Canine cancers are likely more representative of human cancers than induced murine tumors. These trials could bridge murine models and human trials and better prioritize drug candidates. Such i...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695388/ https://www.ncbi.nlm.nih.gov/pubmed/31417164 http://dx.doi.org/10.1038/s41598-019-48425-5 |
Sumario: | Comparative clinical trials of domestic dogs with spontaneously-occurring cancers are increasingly common. Canine cancers are likely more representative of human cancers than induced murine tumors. These trials could bridge murine models and human trials and better prioritize drug candidates. Such investigations also benefit veterinary patients. We aimed to evaluate the design and reporting practices of clinical trials containing ≥2 arms and involving tumor-bearing dogs. 163 trials containing 8552 animals were systematically retrieved from PubMed (searched 1/18/18). Data extracted included sample sizes, response criteria, study design, and outcome reporting. Low sample sizes were prevalent (median n = 33). The median detectable hazard ratio was 0.3 for overall survival and 0.06 for disease progression. Progressive disease thresholds for studies that did not adopt VCOG-RECIST guidelines varied in stringency. Additionally, there was significant underreporting across all Cochrane risk of bias categories. The proportion of studies with unclear reporting ranged from 44% (randomization) to 94% (selective reporting). 72% of studies also failed to define a primary outcome. The present study confirms previous findings that clinical trials in dogs need to be improved, particularly regarding low statistical power and underreporting of design and outcomes. |
---|