Cargando…
Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation
In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695476/ https://www.ncbi.nlm.nih.gov/pubmed/31253574 http://dx.doi.org/10.1016/j.molcel.2019.06.002 |
_version_ | 1783444047710388224 |
---|---|
author | Rabl, Julius Bunker, Richard D. Schenk, Andreas D. Cavadini, Simone Gill, Mark E. Abdulrahman, Wassim Andrés-Pons, Amparo Luijsterburg, Martijn S. Ibrahim, Adel F.M. Branigan, Emma Aguirre, Jacob D. Marceau, Aimee H. Guérillon, Claire Bouwmeester, Tewis Hassiepen, Ulrich Peters, Antoine H.F.M. Renatus, Martin Gelman, Laurent Rubin, Seth M. Mailand, Niels van Attikum, Haico Hay, Ronald T. Thomä, Nicolas H. |
author_facet | Rabl, Julius Bunker, Richard D. Schenk, Andreas D. Cavadini, Simone Gill, Mark E. Abdulrahman, Wassim Andrés-Pons, Amparo Luijsterburg, Martijn S. Ibrahim, Adel F.M. Branigan, Emma Aguirre, Jacob D. Marceau, Aimee H. Guérillon, Claire Bouwmeester, Tewis Hassiepen, Ulrich Peters, Antoine H.F.M. Renatus, Martin Gelman, Laurent Rubin, Seth M. Mailand, Niels van Attikum, Haico Hay, Ronald T. Thomä, Nicolas H. |
author_sort | Rabl, Julius |
collection | PubMed |
description | In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions. |
format | Online Article Text |
id | pubmed-6695476 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-66954762019-08-19 Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation Rabl, Julius Bunker, Richard D. Schenk, Andreas D. Cavadini, Simone Gill, Mark E. Abdulrahman, Wassim Andrés-Pons, Amparo Luijsterburg, Martijn S. Ibrahim, Adel F.M. Branigan, Emma Aguirre, Jacob D. Marceau, Aimee H. Guérillon, Claire Bouwmeester, Tewis Hassiepen, Ulrich Peters, Antoine H.F.M. Renatus, Martin Gelman, Laurent Rubin, Seth M. Mailand, Niels van Attikum, Haico Hay, Ronald T. Thomä, Nicolas H. Mol Cell Article In mammals, ∼100 deubiquitinases act on ∼20,000 intracellular ubiquitination sites. Deubiquitinases are commonly regarded as constitutively active, with limited regulatory and targeting capacity. The BRCA1-A and BRISC complexes serve in DNA double-strand break repair and immune signaling and contain the lysine-63 linkage-specific BRCC36 subunit that is functionalized by scaffold subunits ABRAXAS and ABRO1, respectively. The molecular basis underlying BRCA1-A and BRISC function is currently unknown. Here we show that in the BRCA1-A complex structure, ABRAXAS integrates the DNA repair protein RAP80 and provides a high-affinity binding site that sequesters the tumor suppressor BRCA1 away from the break site. In the BRISC structure, ABRO1 binds SHMT2α, a metabolic enzyme enabling cancer growth in hypoxic environments, which we find prevents BRCC36 from binding and cleaving ubiquitin chains. Our work explains modularity in the BRCC36 DUB family, with different adaptor subunits conferring diversified targeting and regulatory functions. Cell Press 2019-08-08 /pmc/articles/PMC6695476/ /pubmed/31253574 http://dx.doi.org/10.1016/j.molcel.2019.06.002 Text en © 2019 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Rabl, Julius Bunker, Richard D. Schenk, Andreas D. Cavadini, Simone Gill, Mark E. Abdulrahman, Wassim Andrés-Pons, Amparo Luijsterburg, Martijn S. Ibrahim, Adel F.M. Branigan, Emma Aguirre, Jacob D. Marceau, Aimee H. Guérillon, Claire Bouwmeester, Tewis Hassiepen, Ulrich Peters, Antoine H.F.M. Renatus, Martin Gelman, Laurent Rubin, Seth M. Mailand, Niels van Attikum, Haico Hay, Ronald T. Thomä, Nicolas H. Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation |
title | Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation |
title_full | Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation |
title_fullStr | Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation |
title_full_unstemmed | Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation |
title_short | Structural Basis of BRCC36 Function in DNA Repair and Immune Regulation |
title_sort | structural basis of brcc36 function in dna repair and immune regulation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695476/ https://www.ncbi.nlm.nih.gov/pubmed/31253574 http://dx.doi.org/10.1016/j.molcel.2019.06.002 |
work_keys_str_mv | AT rabljulius structuralbasisofbrcc36functionindnarepairandimmuneregulation AT bunkerrichardd structuralbasisofbrcc36functionindnarepairandimmuneregulation AT schenkandreasd structuralbasisofbrcc36functionindnarepairandimmuneregulation AT cavadinisimone structuralbasisofbrcc36functionindnarepairandimmuneregulation AT gillmarke structuralbasisofbrcc36functionindnarepairandimmuneregulation AT abdulrahmanwassim structuralbasisofbrcc36functionindnarepairandimmuneregulation AT andresponsamparo structuralbasisofbrcc36functionindnarepairandimmuneregulation AT luijsterburgmartijns structuralbasisofbrcc36functionindnarepairandimmuneregulation AT ibrahimadelfm structuralbasisofbrcc36functionindnarepairandimmuneregulation AT braniganemma structuralbasisofbrcc36functionindnarepairandimmuneregulation AT aguirrejacobd structuralbasisofbrcc36functionindnarepairandimmuneregulation AT marceauaimeeh structuralbasisofbrcc36functionindnarepairandimmuneregulation AT guerillonclaire structuralbasisofbrcc36functionindnarepairandimmuneregulation AT bouwmeestertewis structuralbasisofbrcc36functionindnarepairandimmuneregulation AT hassiepenulrich structuralbasisofbrcc36functionindnarepairandimmuneregulation AT petersantoinehfm structuralbasisofbrcc36functionindnarepairandimmuneregulation AT renatusmartin structuralbasisofbrcc36functionindnarepairandimmuneregulation AT gelmanlaurent structuralbasisofbrcc36functionindnarepairandimmuneregulation AT rubinsethm structuralbasisofbrcc36functionindnarepairandimmuneregulation AT mailandniels structuralbasisofbrcc36functionindnarepairandimmuneregulation AT vanattikumhaico structuralbasisofbrcc36functionindnarepairandimmuneregulation AT hayronaldt structuralbasisofbrcc36functionindnarepairandimmuneregulation AT thomanicolash structuralbasisofbrcc36functionindnarepairandimmuneregulation |