Cargando…
Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor
Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695599/ https://www.ncbi.nlm.nih.gov/pubmed/31366130 http://dx.doi.org/10.3390/ijms20153727 |
_version_ | 1783444073061810176 |
---|---|
author | Okada, Motohiro Fukuyama, Kouji Shiroyama, Takashi Ueda, Yuto |
author_facet | Okada, Motohiro Fukuyama, Kouji Shiroyama, Takashi Ueda, Yuto |
author_sort | Okada, Motohiro |
collection | PubMed |
description | Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines. |
format | Online Article Text |
id | pubmed-6695599 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-66955992019-09-05 Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor Okada, Motohiro Fukuyama, Kouji Shiroyama, Takashi Ueda, Yuto Int J Mol Sci Article Carbamazepine (CBZ) binds adenosine receptors, but detailed effects of CBZ on astroglial transmission associated with adenosine receptor still need to be clarified. To clarify adenosinergic action of CBZ on astroglial transmission, primary cultured astrocytes were acutely or chronically treated with CBZ, proinflammatory cytokines (interferon γ (IFNγ) and tumor necrosis factor α (TNFα)), and adenosine A2A receptor (A2AR) agonist (CGS21680). IFNγ and TNFα increased basal, adenophostin-A (AdA)-evoked, and 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid (AMPA)-evoked astroglial L-glutamate releases. In physiological condition, CGS21680 increased basal astroglial L-glutamate release but glutamate transporter inhibition prevented this CGS21680 action. CBZ did not affect basal release, whereas glutamate transporter inhibition generated CBZ-induced glutamate release. Furthermore, AdA-evoked and AMPA-evoked releases were inhibited by CBZ but were unaffected by CGS21680. Contrary to physiological condition, chronic administrations of IFNγ and TNFα enhanced basal, AdA-, and AMPA-evoked releases, whereas IFNγ and TNFα decreased and increased CGS21680-evoked releases via modulation A2AR expression. Both chronic administration of CGS21680 and CBZ suppressed astroglial L-glutamate release responses induced by chronic cytokine exposer. Especifically, chronic administration of CBZ and CGS21680 prevented the reduction and elevation of A2AR expression by respective IFNγ and TNFα. These findings suggest that A2AR agonistic effects of CBZ contribute to chronic prevention of pathomechanisms developments of several neuropsychiatric disorders associated with proinflammatory cytokines. MDPI 2019-07-30 /pmc/articles/PMC6695599/ /pubmed/31366130 http://dx.doi.org/10.3390/ijms20153727 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Okada, Motohiro Fukuyama, Kouji Shiroyama, Takashi Ueda, Yuto Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor |
title | Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor |
title_full | Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor |
title_fullStr | Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor |
title_full_unstemmed | Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor |
title_short | Carbamazepine Attenuates Astroglial L-Glutamate Release Induced by Pro-Inflammatory Cytokines via Chronically Activation of Adenosine A(2A) Receptor |
title_sort | carbamazepine attenuates astroglial l-glutamate release induced by pro-inflammatory cytokines via chronically activation of adenosine a(2a) receptor |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695599/ https://www.ncbi.nlm.nih.gov/pubmed/31366130 http://dx.doi.org/10.3390/ijms20153727 |
work_keys_str_mv | AT okadamotohiro carbamazepineattenuatesastrogliallglutamatereleaseinducedbyproinflammatorycytokinesviachronicallyactivationofadenosinea2areceptor AT fukuyamakouji carbamazepineattenuatesastrogliallglutamatereleaseinducedbyproinflammatorycytokinesviachronicallyactivationofadenosinea2areceptor AT shiroyamatakashi carbamazepineattenuatesastrogliallglutamatereleaseinducedbyproinflammatorycytokinesviachronicallyactivationofadenosinea2areceptor AT uedayuto carbamazepineattenuatesastrogliallglutamatereleaseinducedbyproinflammatorycytokinesviachronicallyactivationofadenosinea2areceptor |