Cargando…
Dynamic Deformation Reconstruction of Variable Section WING with Fiber Bragg Grating Sensors
In order to monitor the variable-section wing deformation in real-time, this paper proposes a dynamic reconstruction algorithm based on the inverse finite element method and fuzzy network to sense the deformation of the variable-section beam structure. Firstly, based on Timoshenko beam theory and in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695610/ https://www.ncbi.nlm.nih.gov/pubmed/31366185 http://dx.doi.org/10.3390/s19153350 |
Sumario: | In order to monitor the variable-section wing deformation in real-time, this paper proposes a dynamic reconstruction algorithm based on the inverse finite element method and fuzzy network to sense the deformation of the variable-section beam structure. Firstly, based on Timoshenko beam theory and inverse finite element framework, a deformation reconstruction model of variable-section beam element was established. Then, considering the installation error of the fiber Bragg grating (FBG) sensor and the dynamic un-modeled error caused by the difference between the static model and dynamic model, the real-time measured strain was corrected using a solidified fuzzy network. The parameters of the fuzzy network were learned using support vector machines to enhance the generalization ability of the fuzzy network. The loading deformation experiment shows that the deformation of the variable section wing can be reconstructed with the proposed algorithm in high precision. |
---|