Cargando…
Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics
Machine learning classification algorithms are widely used for the prediction and classification of the different properties of molecules such as toxicity or biological activity. The prediction of toxic vs. non-toxic molecules is important due to testing on living animals, which has ethical and cost...
Autores principales: | Rácz, Anita, Bajusz, Dávid, Héberger, Károly |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695655/ https://www.ncbi.nlm.nih.gov/pubmed/31374986 http://dx.doi.org/10.3390/molecules24152811 |
Ejemplares similares
-
Machine learning models for classification tasks related to drug safety
por: Rácz, Anita, et al.
Publicado: (2021) -
Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking
por: Bajusz, Dávid, et al.
Publicado: (2019) -
Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification
por: Rácz, Anita, et al.
Publicado: (2021) -
Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
por: Bajusz, Dávid, et al.
Publicado: (2015) -
Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints
por: Rácz, Anita, et al.
Publicado: (2018)