Cargando…
Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking
Ensemble docking is a widely applied concept in structure-based virtual screening—to at least partly account for protein flexibility—usually granting a significant performance gain at a modest cost of speed. From the individual, single-structure docking scores, a consensus score needs to be produced...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695709/ https://www.ncbi.nlm.nih.gov/pubmed/31344902 http://dx.doi.org/10.3390/molecules24152690 |
Sumario: | Ensemble docking is a widely applied concept in structure-based virtual screening—to at least partly account for protein flexibility—usually granting a significant performance gain at a modest cost of speed. From the individual, single-structure docking scores, a consensus score needs to be produced by data fusion: this is usually done by taking the best docking score from the available pool (in most cases— and in this study as well—this is the minimum score). Nonetheless, there are a number of other fusion rules that can be applied. We report here the results of a detailed statistical comparison of seven fusion rules for ensemble docking, on five case studies of current drug targets, based on four performance metrics. Sevenfold cross-validation and variance analysis (ANOVA) allowed us to highlight the best fusion rules. The results are presented in bubble plots, to unite the four performance metrics into a single, comprehensive image. Notably, we suggest the use of the geometric and harmonic means as better alternatives to the generally applied minimum fusion rule. |
---|