Cargando…
Comparison of Data Fusion Methods as Consensus Scores for Ensemble Docking
Ensemble docking is a widely applied concept in structure-based virtual screening—to at least partly account for protein flexibility—usually granting a significant performance gain at a modest cost of speed. From the individual, single-structure docking scores, a consensus score needs to be produced...
Autores principales: | Bajusz, Dávid, Rácz, Anita, Héberger, Károly |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695709/ https://www.ncbi.nlm.nih.gov/pubmed/31344902 http://dx.doi.org/10.3390/molecules24152690 |
Ejemplares similares
-
Multi-Level Comparison of Machine Learning Classifiers and Their Performance Metrics
por: Rácz, Anita, et al.
Publicado: (2019) -
Effect of Dataset Size and Train/Test Split Ratios in QSAR/QSPR Multiclass Classification
por: Rácz, Anita, et al.
Publicado: (2021) -
Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
por: Bajusz, Dávid, et al.
Publicado: (2015) -
Life beyond the Tanimoto coefficient: similarity measures for interaction fingerprints
por: Rácz, Anita, et al.
Publicado: (2018) -
Intercorrelation Limits in Molecular Descriptor Preselection for QSAR/QSPR
por: Rácz, Anita, et al.
Publicado: (2019)