Cargando…

A Node Density Control Learning Method for the Internet of Things

When examining density control learning methods for wireless sensor nodes, control time is often long and power consumption is usually very high. This paper proposes a node density control learning method for wireless sensor nodes and applies it to an environment based on Internet of Things architec...

Descripción completa

Detalles Bibliográficos
Autores principales: Lou, Shumei, Srivastava, Gautam, Liu, Shuai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695715/
https://www.ncbi.nlm.nih.gov/pubmed/31387270
http://dx.doi.org/10.3390/s19153428
Descripción
Sumario:When examining density control learning methods for wireless sensor nodes, control time is often long and power consumption is usually very high. This paper proposes a node density control learning method for wireless sensor nodes and applies it to an environment based on Internet of Things architectures. Firstly, the characteristics of wireless sensors networks and the structure of mobile nodes are analyzed. Combined with the flexibility of wireless sensor networks and the degree of freedom of real-time processing and configuration of field programmable gate array (FPGA) data, a one-step transition probability matrix is introduced. In addition, the probability of arrival of signals between any pair of mobile nodes is also studied and calculated. Finally, the probability of signal connection between mobile nodes is close to 1, approximating the minimum node density at T. We simulate using a fully connected network identifying a worst-case test environment. Detailed experimental results show that our novel proposed method has shorter completion time and lower power consumption than previous attempts. We achieve high node density control as well at close to 90%.