Cargando…

Construction and Swelling Properties of Thermosensitive N-isopropyl Acrylamide Microspheres With Controllable Size

In recent years, thermosensitive poly(N-isopropylacrylamide) (PNIPAM) microspheres have received extensive attention due to their many advantages, and their size and swelling ratio are two crucial factors. In this paper, homogeneous and hollow thermosensitive microspheres were prepared by free radic...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Chen, Lu, Si-xian, Wang, Liang, Hui, Yao, Lu, Yan-ru, Chen, Wei-jia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6695768/
https://www.ncbi.nlm.nih.gov/pubmed/31366069
http://dx.doi.org/10.3390/ma12152428
Descripción
Sumario:In recent years, thermosensitive poly(N-isopropylacrylamide) (PNIPAM) microspheres have received extensive attention due to their many advantages, and their size and swelling ratio are two crucial factors. In this paper, homogeneous and hollow thermosensitive microspheres were prepared by free radical polymerization in an aqueous solution. The effects of the process parameters on the size of the microspheres were studied. The results indicated that the change in size during reaction at different temperatures was not obvious. The size of the microspheres ranged from 802 ± 35.4 nm to 423 ± 33.7 nm with the changes in the dosage of the initiator. Meanwhile, it was observed that the size of microspheres was slightly reduced due to the increase of reaction time. When the dosage of methyl methacrylate (MAA) is increased, the size of the hollow microspheres increased by more than 110%. The average size of the microspheres was smaller when the content of sodium dodecyl sulfate (SDS) was 3 wt%. The microspheres with varying reaction parameters showed a continuous decreasing swelling ratio when the temperatures were changed from 28 °C to 35 °C. In comparison with homogeneous microspheres, the average swelling ratio of hollow microspheres was larger.