Cargando…
Experimental Research on Uniaxial Compression Constitutive Model of Hybrid Fiber-Reinforced Cementitious Composites
In order to establish accurate compressive constitutive model of Hybrid Fiber-Reinforced Concrete (HFRC), 10 groups of HFRC specimens containing polyvinyl alcohol (PVA), polypropylene (PP), and steel fibers are designed and compressive testing is conducted. On the basis of summarizing and comparing...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696078/ https://www.ncbi.nlm.nih.gov/pubmed/31349622 http://dx.doi.org/10.3390/ma12152370 |
Sumario: | In order to establish accurate compressive constitutive model of Hybrid Fiber-Reinforced Concrete (HFRC), 10 groups of HFRC specimens containing polyvinyl alcohol (PVA), polypropylene (PP), and steel fibers are designed and compressive testing is conducted. On the basis of summarizing and comparing the existing research, accuracy of various stress-strain constitutive model is compared and the method of calculating fitting parameters is put forward, peak stress, peak strain, and elastic modulus of specimens with different fiber proportion are analyzed, the calculation expressions of each fitting parameter are given. The results show that, under the condition that the volume of the hybrid fiber is 2% with the proportion of the steel fiber increase, the strength of the specimen increases, the peak strain decreases slightly, and the elastic modulus increases significantly. In specimens mixed with PVA-PP hybrid fiber, with the increase of PVA fiber proportion, the peak stress and elastic modulus of the material are improved, and the peak strain are decreased. The existing stress-strain expressions agree well with the tests. Accuracy of exponential model proposed in this paper is the highest, which can be applied in engineering and nonlinear finite element analysis of components. |
---|