Cargando…
On-Device Deep Learning Inference for Efficient Activity Data Collection
Labeling activity data is a central part of the design and evaluation of human activity recognition systems. The performance of the systems greatly depends on the quantity and “quality” of annotations; therefore, it is inevitable to rely on users and to keep them motivated to provide activity labels...
Autores principales: | Mairittha, Nattaya, Mairittha, Tittaya, Inoue, Sozo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696120/ https://www.ncbi.nlm.nih.gov/pubmed/31387314 http://dx.doi.org/10.3390/s19153434 |
Ejemplares similares
-
On-Device Deep Personalization for Robust Activity Data Collection †
por: Mairittha, Nattaya, et al.
Publicado: (2020) -
Evaluating a Spoken Dialogue System for Recording Systems of Nursing Care
por: Mairittha, Tittaya, et al.
Publicado: (2019) -
Automatic Labeled Dialogue Generation for Nursing Record Systems
por: Mairittha, Tittaya, et al.
Publicado: (2020) -
Optimizing Forecasted Activity Notifications with Reinforcement Learning
por: Fikry, Muhammad, et al.
Publicado: (2023) -
A Method for Sensor-Based Activity Recognition in Missing Data Scenario
por: Hossain, Tahera, et al.
Publicado: (2020)