Cargando…

Characterization of a Cis-Prenyltransferase from Lilium longiflorum Anther

A group of prenyltransferases catalyze chain elongation of farnesyl diphosphate (FPP) to designated lengths via consecutive condensation reactions with specific numbers of isopentenyl diphosphate (IPP). cis-Prenyltransferases, which catalyze cis-double bond formation during IPP condensation, usually...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Jyun-Yu, Teng, Kuo-Hsun, Liu, Ming-Che, Wang, Co-Shine, Liang, Po-Huang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696123/
https://www.ncbi.nlm.nih.gov/pubmed/31357567
http://dx.doi.org/10.3390/molecules24152728
Descripción
Sumario:A group of prenyltransferases catalyze chain elongation of farnesyl diphosphate (FPP) to designated lengths via consecutive condensation reactions with specific numbers of isopentenyl diphosphate (IPP). cis-Prenyltransferases, which catalyze cis-double bond formation during IPP condensation, usually synthesize long-chain products as lipid carriers to mediate peptidoglycan biosynthesis in prokaryotes and protein glycosylation in eukaryotes. Unlike only one or two cis-prenyltransferases in bacteria, yeast, and animals, plants have several cis-prenyltransferases and their functions are less understood. As reported here, a cis-prenyltransferase from Lilium longiflorum anther, named LLA66, was expressed in Saccharomyces cerevisiae and characterized to produce C40/C45 products without the capability to restore the growth defect from Rer2-deletion, although it was phylogenetically categorized as a long-chain enzyme. Our studies suggest that evolutional mutations may occur in the plant cis-prenyltransferase to convert it into a shorter-chain enzyme.