Cargando…

Pharmacokinetic and Metabolism Studies of Monomethyl Auristatin F via Liquid Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry

A simple liquid chromatography–quadrupole-time-of-flight–mass spectrometric assay (LC-TOF-MS/MS) has been developed for the evaluation of metabolism and pharmacokinetic (PK) characteristics of monomethyl auristatin F (MMAF) in rat, which is being used as a payload for antibody-drug conjugates. LC-TO...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Min-Ho, Lee, Byeong ill, Byeon, Jin-Ju, Shin, Seok-Ho, Choi, Jangmi, Park, Yuri, Shin, Young G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696338/
https://www.ncbi.nlm.nih.gov/pubmed/31362431
http://dx.doi.org/10.3390/molecules24152754
Descripción
Sumario:A simple liquid chromatography–quadrupole-time-of-flight–mass spectrometric assay (LC-TOF-MS/MS) has been developed for the evaluation of metabolism and pharmacokinetic (PK) characteristics of monomethyl auristatin F (MMAF) in rat, which is being used as a payload for antibody-drug conjugates. LC-TOF-MS/MS method was qualified for the quantification of MMAF in rat plasma. The calibration curves were acceptable over the concentration range from 3.02 to 2200 ng/mL using quadratic regression. MMAF was stable in various conditions. There were no significant matrix effects between rat and other preclinical species. The PK studies showed that the bioavailability of MMAF was 0% with high clearance. Additionally, the metabolite profiling studies, in vitro/in vivo, were performed. Seven metabolites for MMAF were tentatively identified in liver microsome. The major metabolic pathway was demethylation, which was one of the metabolic pathways predicted by MedChem Designer. Therefore, these results will be helpful to understand the PK, catabolism, and metabolism behavior of MMAF comprehensively when developing antibody-drug conjugates (ADCs) in the future.