Cargando…
Improving IoT Predictions through the Identification of Graphical Features
IoT sensor networks have an inherent graph structure that can be used to extract graphical features for improving performance in a variety of prediction tasks. We propose a framework that represents IoT sensor network data as a graph, extracts graphical features, and applies feature selection method...
Autores principales: | Akter, Syeda, Holder, Lawrence |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696358/ https://www.ncbi.nlm.nih.gov/pubmed/31344811 http://dx.doi.org/10.3390/s19153250 |
Ejemplares similares
-
Identification of IoT Actors
por: Hadzovic, Suada, et al.
Publicado: (2021) -
The proposed hybrid deep learning intrusion prediction IoT (HDLIP-IoT) framework
por: Fadel, Magdy M., et al.
Publicado: (2022) -
IoT
por: Yarali, Abdulrahman
Publicado: (2018) -
Building IoT Services for Aging in Place Using Standard-Based IoT Platforms and Heterogeneous IoT Products
por: Fattah, Sheik Mohammad Mostakim, et al.
Publicado: (2017) -
Addressing the Security Gap in IoT: Towards an IoT Cyber Range
por: Nock, Oliver, et al.
Publicado: (2020)