Cargando…
Mechanical Properties and Resistance to Acid Corrosion of Polymer Concrete Incorporating Ceramsite, Fly Ash and Glass Fibers
A novel polymer concrete (PC) using an aggregate of ceramsite, fly ash and glass fiber was created. Specimens were used in experiments to investigate its anticorrosion properties to determine the viability of its use in flue gas desulfurization (FGD) stacks. The inclusion of ceramsite reduces both t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696480/ https://www.ncbi.nlm.nih.gov/pubmed/31370235 http://dx.doi.org/10.3390/ma12152441 |
Sumario: | A novel polymer concrete (PC) using an aggregate of ceramsite, fly ash and glass fiber was created. Specimens were used in experiments to investigate its anticorrosion properties to determine the viability of its use in flue gas desulfurization (FGD) stacks. The inclusion of ceramsite reduces both the weight and the cost of the material. The effects of ceramsite and glass fiber on the flexural strength and compressive strength of the concrete were investigated. The experimental results showed that ceramsite reduces the flexural strength and the compressive strength of the concrete, but that the glass fiber increases both. Surface resistance to sulfuric acid corrosion and the microstructure of the corroded concrete were investigated. Specimens of the novel PC and the control PC strongly resisted acid corrosion. Although the specimen surfaces deteriorated, the interior structure of the PC was unaffected after 50 days of acid immersion. Processes by which sulfuric acid corrodes PC surfaces were determined. |
---|