Cargando…
A Quantum Ant Colony Multi-Objective Routing Algorithm in WSN and Its Application in a Manufacturing Environment
In many complex manufacturing environments, the running equipment must be monitored by Wireless Sensor Networks (WSNs), which not only requires WSNs to have long service lifetimes, but also to achieve rapid and high-quality transmission of equipment monitoring data to monitoring centers. Traditional...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696611/ https://www.ncbi.nlm.nih.gov/pubmed/31362459 http://dx.doi.org/10.3390/s19153334 |
Sumario: | In many complex manufacturing environments, the running equipment must be monitored by Wireless Sensor Networks (WSNs), which not only requires WSNs to have long service lifetimes, but also to achieve rapid and high-quality transmission of equipment monitoring data to monitoring centers. Traditional routing algorithms in WSNs, such as Basic Ant-Based Routing (BABR) only require the single shortest path, and the BABR algorithm converges slowly, easily falling into a local optimum and leading to premature stagnation of the algorithm. A new WSN routing algorithm, named the Quantum Ant Colony Multi-Objective Routing (QACMOR) can be used for monitoring in such manufacturing environments by introducing quantum computation and a multi-objective fitness function into the routing research algorithm. Concretely, quantum bits are used to represent the node pheromone, and quantum gates are rotated to update the pheromone of the search path. The factors of energy consumption, transmission delay, and network load-balancing degree of the nodes in the search path act as fitness functions to determine the optimal path. Here, a simulation analysis and actual manufacturing environment verify the QACMOR’s improvement in performance. |
---|