Cargando…

Improved Remotely Sensed Total Basin Discharge and Its Seasonal Error Characterization in the Yangtze River Basin

Total basin discharge is a critical component for the understanding of surface water exchange at the land–ocean interface. A continuous decline in the number of global hydrological stations over the past fifteen years has promoted the estimation of total basin discharge using remote sensing. Previou...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Yutong, Fok, Hok Sum, Ma, Zhongtian, Tenzer, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696618/
https://www.ncbi.nlm.nih.gov/pubmed/31375013
http://dx.doi.org/10.3390/s19153386
Descripción
Sumario:Total basin discharge is a critical component for the understanding of surface water exchange at the land–ocean interface. A continuous decline in the number of global hydrological stations over the past fifteen years has promoted the estimation of total basin discharge using remote sensing. Previous remotely sensed total basin discharge of the Yangtze River basin, expressed in terms of runoff, was estimated via the water balance equation, using a combination of remote sensing and modeled data products of various qualities. Nevertheless, the modeled data products are presented with large uncertainties and the seasonal error characteristics of the remotely sensed total basin discharge have rarely been investigated. In this study, we conducted total basin discharge estimation of the Yangtze River Basin, based purely on remotely sensed data. This estimation considered the period between January 2003 and December 2012 at a monthly temporal scale and was based on precipitation data collected from the Tropical Rainfall Measuring Mission (TRMM) satellite, evapotranspiration data collected from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite, and terrestrial water storage data collected from the Gravity Recovery and Climate Experiment (GRACE) satellite. A seasonal accuracy assessment was performed to detect poor performances and highlight any deficiencies in the modeled data products derived from the discharge estimation. Comparison of our estimated runoff results based purely on remotely sensed data, and the most accurate results of a previous study against the observed runoff revealed a Pearson correlation coefficient (PCC) of 0.89 and 0.74, and a root-mean-square error (RMSE) of 11.69 mm/month and 14.30 mm/month, respectively. We identified some deficiencies in capturing the maximum and the minimum of runoff rates during both summer and winter, due to an underestimation and overestimation of evapotranspiration, respectively.