Cargando…
A Tool for Visualization and Analysis of Single-Cell RNA-Seq Data Based on Text Mining
Gene expression in individual cells can now be measured for thousands of cells in a single experiment thanks to innovative sample-preparation and sequencing technologies. State-of-the-art computational pipelines for single-cell RNA-sequencing data, however, still employ computational methods that we...
Autores principales: | Gambardella, Gennaro, di Bernardo, Diego |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6696874/ https://www.ncbi.nlm.nih.gov/pubmed/31447887 http://dx.doi.org/10.3389/fgene.2019.00734 |
Ejemplares similares
-
SCSA: A Cell Type Annotation Tool for Single-Cell RNA-seq Data
por: Cao, Yinghao, et al.
Publicado: (2020) -
Landscape of the Dark Transcriptome Revealed Through Re-mining Massive RNA-Seq Data
por: Li, Jing, et al.
Publicado: (2021) -
Normalization Methods on Single-Cell RNA-seq Data: An Empirical Survey
por: Lytal, Nicholas, et al.
Publicado: (2020) -
Single-Cell RNA-Seq Technologies and Related Computational Data Analysis
por: Chen, Geng, et al.
Publicado: (2019) -
McImpute: Matrix Completion Based Imputation for Single Cell RNA-seq Data
por: Mongia, Aanchal, et al.
Publicado: (2019)