Cargando…

Calcium alginate entrapped Eupatorium adenophorum Sprengel stems powder for chromium(VI) biosorption in aqueous mediums

A novel biosorbent, Eupatorium adenophorum Sprengel-alginate beads was used for chromium(VI) biosorption from aqueous solutions. Biosorption process was optimized at pH 2.0, biomass concentration 1.0 g/L, contact time 60 min, and temperature 30 (o)C respectively. Maximum uptake capacity of Cr(VI) wa...

Descripción completa

Detalles Bibliográficos
Autor principal: Aryal, Mahendra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697413/
https://www.ncbi.nlm.nih.gov/pubmed/31419220
http://dx.doi.org/10.1371/journal.pone.0213477
Descripción
Sumario:A novel biosorbent, Eupatorium adenophorum Sprengel-alginate beads was used for chromium(VI) biosorption from aqueous solutions. Biosorption process was optimized at pH 2.0, biomass concentration 1.0 g/L, contact time 60 min, and temperature 30 (o)C respectively. Maximum uptake capacity of Cr(VI) was calculated at 28.011 mg/g. It was found that the overall biosorption process was best described by pseudo second-order kinetics with high correlation coefficient values. Intraparticle diffusion model suggested that Cr(VI) biosorption may proceed within multiple steps. Data obtained from the batch studies confirmed well to the Langmuir, Temkin, and Hill-der Boer isotherm models. Scatchard plot analysis further supported the mono-layer biosorption of Cr(VI) ions on Eupatorium adenophorum Sprengel-alginate beads as described by Langmuir isotherm model. Numerical values of E obtained from Dubinin-Radushkevich isotherm model identified the physisorption as predominant mechanism for Cr(VI) biosorption. The negative values of ΔG(o) confirmed the spontaneous and feasibility nature, whereas positive value of ΔH(o) showed the endothermic nature of biosorption process. Positive value of ΔS(o) indicated an increase in the randomness at the solid/solution interface during the biosorption process. The endothermic nature of Cr(VI) biosorption was also described by Temkin isotherm model. The results indicated that Cr(VI) biosorption was not significantly affected by the presence of co-ions at lower concentrations. Desorption of Cr(VI) ions from metal-loaded Eupatorium adenophorum-alginate beads was observed at 92.091% with 0.5 M HNO(3) solution in solid to liquid ratio of 1.0 g/L.