Cargando…
Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data
Objective : We present a narrative review of recent work on the utilisation of Natural Language Processing (NLP) for the analysis of social media (including online health communities) specifically for public health applications. Methods : We conducted a literature review of NLP research that utilise...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Georg Thieme Verlag KG
2019
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697505/ https://www.ncbi.nlm.nih.gov/pubmed/31419834 http://dx.doi.org/10.1055/s-0039-1677918 |
_version_ | 1783444395738005504 |
---|---|
author | Conway, Mike Hu, Mengke Chapman, Wendy W. |
author_facet | Conway, Mike Hu, Mengke Chapman, Wendy W. |
author_sort | Conway, Mike |
collection | PubMed |
description | Objective : We present a narrative review of recent work on the utilisation of Natural Language Processing (NLP) for the analysis of social media (including online health communities) specifically for public health applications. Methods : We conducted a literature review of NLP research that utilised social media or online consumer-generated text for public health applications, focussing on the years 2016 to 2018. Papers were identified in several ways, including PubMed searches and the inspection of recent conference proceedings from the Association of Computational Linguistics (ACL), the Conference on Human Factors in Computing Systems (CHI), and the International AAAI (Association for the Advancement of Artificial Intelligence) Conference on Web and Social Media (ICWSM). Popular data sources included Twitter, Reddit, various online health communities, and Facebook. Results : In the recent past, communicable diseases (e.g., influenza, dengue) have been the focus of much social media-based NLP health research. However, mental health and substance use and abuse (including the use of tobacco, alcohol, marijuana, and opioids) have been the subject of an increasing volume of research in the 2016 - 2018 period. Associated with this trend, the use of lexicon-based methods remains popular given the availability of psychologically validated lexical resources suitable for mental health and substance abuse research. Finally, we found that in the period under review “modern" machine learning methods (i.e. deep neural-network-based methods), while increasing in popularity, remain less widely used than “classical" machine learning methods. |
format | Online Article Text |
id | pubmed-6697505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Georg Thieme Verlag KG |
record_format | MEDLINE/PubMed |
spelling | pubmed-66975052019-08-19 Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data Conway, Mike Hu, Mengke Chapman, Wendy W. Yearb Med Inform Objective : We present a narrative review of recent work on the utilisation of Natural Language Processing (NLP) for the analysis of social media (including online health communities) specifically for public health applications. Methods : We conducted a literature review of NLP research that utilised social media or online consumer-generated text for public health applications, focussing on the years 2016 to 2018. Papers were identified in several ways, including PubMed searches and the inspection of recent conference proceedings from the Association of Computational Linguistics (ACL), the Conference on Human Factors in Computing Systems (CHI), and the International AAAI (Association for the Advancement of Artificial Intelligence) Conference on Web and Social Media (ICWSM). Popular data sources included Twitter, Reddit, various online health communities, and Facebook. Results : In the recent past, communicable diseases (e.g., influenza, dengue) have been the focus of much social media-based NLP health research. However, mental health and substance use and abuse (including the use of tobacco, alcohol, marijuana, and opioids) have been the subject of an increasing volume of research in the 2016 - 2018 period. Associated with this trend, the use of lexicon-based methods remains popular given the availability of psychologically validated lexical resources suitable for mental health and substance abuse research. Finally, we found that in the period under review “modern" machine learning methods (i.e. deep neural-network-based methods), while increasing in popularity, remain less widely used than “classical" machine learning methods. Georg Thieme Verlag KG 2019-08 2019-08-16 /pmc/articles/PMC6697505/ /pubmed/31419834 http://dx.doi.org/10.1055/s-0039-1677918 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License, which permits unrestricted reproduction and distribution, for non-commercial purposes only; and use and reproduction, but not distribution, of adapted material for non-commercial purposes only, provided the original work is properly cited. |
spellingShingle | Conway, Mike Hu, Mengke Chapman, Wendy W. Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data |
title | Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data |
title_full | Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data |
title_fullStr | Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data |
title_full_unstemmed | Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data |
title_short | Recent Advances in Using Natural Language Processing to Address Public Health Research Questions Using Social Media and ConsumerGenerated Data |
title_sort | recent advances in using natural language processing to address public health research questions using social media and consumergenerated data |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697505/ https://www.ncbi.nlm.nih.gov/pubmed/31419834 http://dx.doi.org/10.1055/s-0039-1677918 |
work_keys_str_mv | AT conwaymike recentadvancesinusingnaturallanguageprocessingtoaddresspublichealthresearchquestionsusingsocialmediaandconsumergenerateddata AT humengke recentadvancesinusingnaturallanguageprocessingtoaddresspublichealthresearchquestionsusingsocialmediaandconsumergenerateddata AT chapmanwendyw recentadvancesinusingnaturallanguageprocessingtoaddresspublichealthresearchquestionsusingsocialmediaandconsumergenerateddata |