Cargando…

Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes

High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTR...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hong, Diaz, Alexander K., Shaw, Timothy I., Li, Yuxin, Niu, Mingming, Cho, Ji-Hoon, Paugh, Barbara S., Zhang, Yang, Sifford, Jeffrey, Bai, Bing, Wu, Zhiping, Tan, Haiyan, Zhou, Suiping, Hover, Laura D., Tillman, Heather S., Shirinifard, Abbas, Thiagarajan, Suresh, Sablauer, Andras, Pagala, Vishwajeeth, High, Anthony A., Wang, Xusheng, Li, Chunliang, Baker, Suzanne J., Peng, Junmin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697699/
https://www.ncbi.nlm.nih.gov/pubmed/31420543
http://dx.doi.org/10.1038/s41467-019-11661-4
_version_ 1783444415806701568
author Wang, Hong
Diaz, Alexander K.
Shaw, Timothy I.
Li, Yuxin
Niu, Mingming
Cho, Ji-Hoon
Paugh, Barbara S.
Zhang, Yang
Sifford, Jeffrey
Bai, Bing
Wu, Zhiping
Tan, Haiyan
Zhou, Suiping
Hover, Laura D.
Tillman, Heather S.
Shirinifard, Abbas
Thiagarajan, Suresh
Sablauer, Andras
Pagala, Vishwajeeth
High, Anthony A.
Wang, Xusheng
Li, Chunliang
Baker, Suzanne J.
Peng, Junmin
author_facet Wang, Hong
Diaz, Alexander K.
Shaw, Timothy I.
Li, Yuxin
Niu, Mingming
Cho, Ji-Hoon
Paugh, Barbara S.
Zhang, Yang
Sifford, Jeffrey
Bai, Bing
Wu, Zhiping
Tan, Haiyan
Zhou, Suiping
Hover, Laura D.
Tillman, Heather S.
Shirinifard, Abbas
Thiagarajan, Suresh
Sablauer, Andras
Pagala, Vishwajeeth
High, Anthony A.
Wang, Xusheng
Li, Chunliang
Baker, Suzanne J.
Peng, Junmin
author_sort Wang, Hong
collection PubMed
description High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
format Online
Article
Text
id pubmed-6697699
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-66976992019-08-19 Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes Wang, Hong Diaz, Alexander K. Shaw, Timothy I. Li, Yuxin Niu, Mingming Cho, Ji-Hoon Paugh, Barbara S. Zhang, Yang Sifford, Jeffrey Bai, Bing Wu, Zhiping Tan, Haiyan Zhou, Suiping Hover, Laura D. Tillman, Heather S. Shirinifard, Abbas Thiagarajan, Suresh Sablauer, Andras Pagala, Vishwajeeth High, Anthony A. Wang, Xusheng Li, Chunliang Baker, Suzanne J. Peng, Junmin Nat Commun Article High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes, PDGFRA and NTRK1, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the NTRK1 mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the PDGFRA mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of NTRK-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPKa1 and AMPKa2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities. Nature Publishing Group UK 2019-08-16 /pmc/articles/PMC6697699/ /pubmed/31420543 http://dx.doi.org/10.1038/s41467-019-11661-4 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Wang, Hong
Diaz, Alexander K.
Shaw, Timothy I.
Li, Yuxin
Niu, Mingming
Cho, Ji-Hoon
Paugh, Barbara S.
Zhang, Yang
Sifford, Jeffrey
Bai, Bing
Wu, Zhiping
Tan, Haiyan
Zhou, Suiping
Hover, Laura D.
Tillman, Heather S.
Shirinifard, Abbas
Thiagarajan, Suresh
Sablauer, Andras
Pagala, Vishwajeeth
High, Anthony A.
Wang, Xusheng
Li, Chunliang
Baker, Suzanne J.
Peng, Junmin
Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
title Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
title_full Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
title_fullStr Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
title_full_unstemmed Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
title_short Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
title_sort deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697699/
https://www.ncbi.nlm.nih.gov/pubmed/31420543
http://dx.doi.org/10.1038/s41467-019-11661-4
work_keys_str_mv AT wanghong deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT diazalexanderk deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT shawtimothyi deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT liyuxin deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT niumingming deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT chojihoon deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT paughbarbaras deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT zhangyang deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT siffordjeffrey deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT baibing deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT wuzhiping deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT tanhaiyan deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT zhousuiping deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT hoverlaurad deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT tillmanheathers deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT shirinifardabbas deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT thiagarajansuresh deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT sablauerandras deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT pagalavishwajeeth deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT highanthonya deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT wangxusheng deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT lichunliang deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT bakersuzannej deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes
AT pengjunmin deepmultiomicsprofilingofbraintumorsidentifiessignalingnetworksdownstreamofcancerdrivergenes