Cargando…
Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications
BACKGROUND: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains. OBJECTIVES: In the pre...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Genetic Engineering and Biotechnology
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697824/ https://www.ncbi.nlm.nih.gov/pubmed/31457023 http://dx.doi.org/10.15171/ijb.1684 |
_version_ | 1783444436221427712 |
---|---|
author | Ghasemi-Kahrizsangi, Tahereh Marashi, Sayed-Amir Hosseini, Zhaleh |
author_facet | Ghasemi-Kahrizsangi, Tahereh Marashi, Sayed-Amir Hosseini, Zhaleh |
author_sort | Ghasemi-Kahrizsangi, Tahereh |
collection | PubMed |
description | BACKGROUND: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains. OBJECTIVES: In the present study, we have evaluated the predictive power of two GEMs, namely iBsu1103 (for Bacillus subtilis 168) and iMZ1055 (for Bacillus megaterium WSH002). MATERIALS AND METHODS: For comparing the predictive power of Bacillus subtilis and Bacillus megaterium GEMs, experimental data were obtained from previous wet-lab studies included in PubMed. By using these data, we set the environmental, stoichiometric and thermodynamic constraints on the models, and FBA is performed to predict the biomass production rate, and the values of other fluxes. For simulating experimental conditions in this study, COBRA toolbox was used. RESULTS: By using the wealth of data in the literature, we evaluated the accuracy of in silico simulations of these GEMs. Our results suggest that there are some errors in these two models which make them unreliable for predicting the biochemical capabilities of these species. The inconsistencies between experimental and computational data are even greater where B. subtilis and B. megaterium do not have similar phenotypes. CONCLUSIONS: Our analysis suggests that literature-based improvement of genome-scale metabolic network models of the two Bacillus species is essential if these models are to be successfully applied in biotechnology and metabolic engineering. |
format | Online Article Text |
id | pubmed-6697824 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | National Institute of Genetic Engineering and Biotechnology |
record_format | MEDLINE/PubMed |
spelling | pubmed-66978242019-08-27 Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications Ghasemi-Kahrizsangi, Tahereh Marashi, Sayed-Amir Hosseini, Zhaleh Iran J Biotechnol Research Article BACKGROUND: A genome-scale metabolic network model (GEM) is a mathematical representation of an organism’s metabolism. Today, GEMs are popular tools for computationally simulating the biotechnological processes and for predicting biochemical properties of (engineered) strains. OBJECTIVES: In the present study, we have evaluated the predictive power of two GEMs, namely iBsu1103 (for Bacillus subtilis 168) and iMZ1055 (for Bacillus megaterium WSH002). MATERIALS AND METHODS: For comparing the predictive power of Bacillus subtilis and Bacillus megaterium GEMs, experimental data were obtained from previous wet-lab studies included in PubMed. By using these data, we set the environmental, stoichiometric and thermodynamic constraints on the models, and FBA is performed to predict the biomass production rate, and the values of other fluxes. For simulating experimental conditions in this study, COBRA toolbox was used. RESULTS: By using the wealth of data in the literature, we evaluated the accuracy of in silico simulations of these GEMs. Our results suggest that there are some errors in these two models which make them unreliable for predicting the biochemical capabilities of these species. The inconsistencies between experimental and computational data are even greater where B. subtilis and B. megaterium do not have similar phenotypes. CONCLUSIONS: Our analysis suggests that literature-based improvement of genome-scale metabolic network models of the two Bacillus species is essential if these models are to be successfully applied in biotechnology and metabolic engineering. National Institute of Genetic Engineering and Biotechnology 2018-08-11 /pmc/articles/PMC6697824/ /pubmed/31457023 http://dx.doi.org/10.15171/ijb.1684 Text en Copyright © 2017 The Author(s); Published by National Institute of Genetic Engineering and Biotechnology. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article, distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits others to copy and redistribute material just in noncommercial usages, provided the original work is properly cited. |
spellingShingle | Research Article Ghasemi-Kahrizsangi, Tahereh Marashi, Sayed-Amir Hosseini, Zhaleh Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications |
title | Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications |
title_full | Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications |
title_fullStr | Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications |
title_full_unstemmed | Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications |
title_short | Genome-Scale Metabolic Network Models of Bacillus Species Suggest that Model Improvement is Necessary for Biotechnological Applications |
title_sort | genome-scale metabolic network models of bacillus species suggest that model improvement is necessary for biotechnological applications |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697824/ https://www.ncbi.nlm.nih.gov/pubmed/31457023 http://dx.doi.org/10.15171/ijb.1684 |
work_keys_str_mv | AT ghasemikahrizsangitahereh genomescalemetabolicnetworkmodelsofbacillusspeciessuggestthatmodelimprovementisnecessaryforbiotechnologicalapplications AT marashisayedamir genomescalemetabolicnetworkmodelsofbacillusspeciessuggestthatmodelimprovementisnecessaryforbiotechnologicalapplications AT hosseinizhaleh genomescalemetabolicnetworkmodelsofbacillusspeciessuggestthatmodelimprovementisnecessaryforbiotechnologicalapplications |