Cargando…
Genetic Transformation of Oat Mediated by Agrobacterium is enhanced with Sonication and Vacuum Infiltration
BACKGROUND: Oat (Avena sativa) with high nutritive value and fiber content is used as the main food grain in many countries for human diet as well as animal feed. Recently, it became difficult to transfer new genes through the conventional breeding due to the lack of desirable traits. OBJECTIVES: Th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Institute of Genetic Engineering and Biotechnology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697858/ https://www.ncbi.nlm.nih.gov/pubmed/31457038 http://dx.doi.org/10.21859/ijb.1563 |
Sumario: | BACKGROUND: Oat (Avena sativa) with high nutritive value and fiber content is used as the main food grain in many countries for human diet as well as animal feed. Recently, it became difficult to transfer new genes through the conventional breeding due to the lack of desirable traits. OBJECTIVES: The current study aimed at achieving a standardized protocol for Agrobacterium-mediated transformation in oat. MATERIALS AND METHODS: For oat transformation, mature seeds were sterilized, germinated, and used for explants generation. Agrobacterium tumefaciens GV3101 with the binary vector pCAMBIA 1305.1, which carries gus as reporter gene, was utilized in the transformation. The co-cultivation treatment assisted with sonication, and vacuum infiltration, and their combination was employed for transformation with different incubation periods of 48, 72, and 96 hours under the dark conditions. RESULTS: Among the different transformation treatments, the vacuum treatment with 72 hours dark incubation had the best results. Vacuum infiltration of the cultures from leaf base produced a maximum of 25% hygromycin-resistant explants. These explants upon GUS assay and PCR analysis revealed 21.85% and 19.04% transformation efficiency, respectively. CONCLUSIONS: It could be concluded that vacuum infiltration assisted Agrobacterium-mediated transformation is the most efficient method to conduct the genetic improvement of the oat using transformation protocol. |
---|