Cargando…
Characterization of the anti-Staphylococcus aureus fraction from Penthorum chinense Pursh stems
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in hospitals. Penthorum chinense Pursh (PCP), employed by the Miao ethnic minority in China, presents antibacterial activities. In this study, the anti-Staphylococcus aureus activities in the pinocembrin-7-O res...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697954/ https://www.ncbi.nlm.nih.gov/pubmed/31419969 http://dx.doi.org/10.1186/s12906-019-2632-3 |
Sumario: | BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) causes serious infections in hospitals. Penthorum chinense Pursh (PCP), employed by the Miao ethnic minority in China, presents antibacterial activities. In this study, the anti-Staphylococcus aureus activities in the pinocembrin-7-O residue-rich fraction from PCP (PGF) were evaluated and characterized. METHODS: The PGF was prepared with 70% ethanol reflux extraction followed by fractional extraction and column chromatography. Pinocembrin-7-O residue components were identified with electrospray ionization mass spectrometry (ESI-MS). Anti-S. aureus activities of the fraction and the main components were evaluated in vitro with serially diluted microbroth assays. Cytotoxicity was evaluated with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) chromogenic assays using the NCTC 1469 cell line. RESULTS: This study indicated that the PGF and three components (S1, S2, and S3) presented anti-S. aureus activities, including against clinically isolated MRSA strains. The molecular masses of S1, S2, and S3 were identical to those of pinocembrin-7-O-[4″,6″-hexahydroxydiphenoyl (HHDP)]-β-D-glucose, pinocembrin-7-O-[3″-O-galloyl-4″,6″-(s)-HHDP]-β-D-glucose, and Thonningianin A, respectively. The PGF, S1, S2, and S3 all presented an identical minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 and ATCC 43300, which was 62.5 μg/mL. The minimum bactericidal concentrations (MBCs) of the PGF and S3 against ATCC 25923 were 125 and 250 μg/mL, and the MBCs of the PGF, S2, and S3 against ATCC 43300 were 250, 500, and 250 μg/mL, respectively. A time-kill assay consistently indicated that none of the bacterial clones of ATCC 25923 and ATCC 43300 could survive under 2× and 4× MIC PGF treatment for 24 h, respectively. In contrast, 10(4) CFU (colony-forming units) of ATCC 25923 and ATCC 43300 were killed by 8× and 4× MIC S3 within 24 h, respectively. Additionally, 1×, 2×, and 4× MIC the PGF presented similar postantibiotic effects (PAEs) on the strain ATCC 25923. However, the PAE of the PGF on the strain ATCC 43300 was concentration dependent (1× < 2× < 4× MIC). Finally, the PGF (200 μg/mL) and S3 (60 μg/mL) showed no cytotoxicity against human hepatoma cells. CONCLUSIONS: The PGF and S3 from PCP present potential for the treatment of S. aureus and MRSA infections. The components S1 and S2 present inhibition activities against S. aureus. |
---|