Cargando…

Antinociceptive Activity of Petroleum Ether Fraction of Clinacanthus nutans Leaves Methanolic Extract: Roles of Nonopioid Pain Modulatory Systems and Potassium Channels

Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been reported to exert antinociceptive activity. The present study aimed to elucidate the possible antinociceptive mechanisms of a lipid-soluble fraction of MECN, which was obtained after sequential extraction in petroleum ether. The...

Descripción completa

Detalles Bibliográficos
Autores principales: Zakaria, Zainul Amiruddin, Abdul Rahim, Mohammad Hafiz, Roosli, Rushduddin Al Jufri, Mohd Sani, Mohd Hijaz, Marmaya, Najihah Hanisah, Omar, Maizatul Hasyima, Teh, Lay Kek, Salleh, Mohd. Zaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699298/
https://www.ncbi.nlm.nih.gov/pubmed/31467905
http://dx.doi.org/10.1155/2019/6593125
Descripción
Sumario:Methanolic extract of Clinacanthus nutans Lindau leaves (MECN) has been reported to exert antinociceptive activity. The present study aimed to elucidate the possible antinociceptive mechanisms of a lipid-soluble fraction of MECN, which was obtained after sequential extraction in petroleum ether. The petroleum ether fraction of C. nutans (PECN), administered orally to mice, was (i) subjected to capsaicin-, glutamate-, phorbol 12-myristate 13-acetate-, bradykinin-induced nociception model; (ii) prechallenged (intraperitoneal (i.p.)) with 0.15 mg/kg yohimbine, 1 mg/kg pindolol, 3 mg/kg caffeine, 0.2 mg/kg haloperidol, or 10 mg/kg atropine, which were the respective antagonist of α(2)-adrenergic, β-adrenergic, adenosinergic, dopaminergic, or muscarinic receptors; and (iii) prechallenged (i.p.) with 10 mg/kg glibenclamide, 0.04 mg/kg apamin, 0.02 mg/kg charybdotoxin, or 4 mg/kg tetraethylammonium chloride, which were the respective inhibitor of ATP sensitive-, small conductance Ca(2+)-activated-, large conductance Ca(2+)-activated-, or nonselective voltage-activated-K(+) channel. Results obtained demonstrated that PECN (100, 250, and 500 mg/kg) significantly (P<0.05) inhibited all models of nociception described earlier. The antinociceptive activity of 500 mg/kg PECN was significantly (P<0.05) attenuated when prechallenged with all antagonists or K(+) channel blockers. However, only pretreatment with apamin and charybdotoxin caused full inhibition of PECN-induced antinociception. The rest of the K(+) channel blockers and all antagonists caused only partial inhibition of PECN antinociception, respectively. Analyses on PECN's phytoconstituents revealed the presence of antinociceptive-bearing bioactive compounds of volatile (i.e., derivatives of γ–tocopherol, α–tocopherol, and lupeol) and nonvolatile (i.e., cinnamic acid) nature. In conclusion, PECN exerts a non-opioid-mediated antinociceptive activity involving mainly activation of adenosinergic and cholinergic receptors or small- and large-conductance Ca(2+)-activated-K(+) channels.