Cargando…
Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields
Various pesticide nanocarriers have been developed. However, their pest-control applications remain limited in laboratories. Herein, we developed silica nanocapsules encapsulating fipronil (SNC) and their engineered form, poly(ethyleneimine)-coated SNC (SNC-PEI), based on recombinant catalytic modul...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699461/ https://www.ncbi.nlm.nih.gov/pubmed/31440604 http://dx.doi.org/10.1016/j.heliyon.2019.e02277 |
_version_ | 1783444733392060416 |
---|---|
author | Peters, Brenton C. Wibowo, David Yang, Guang-Ze Hui, Yue Middelberg, Anton P.J. Zhao, Chun-Xia |
author_facet | Peters, Brenton C. Wibowo, David Yang, Guang-Ze Hui, Yue Middelberg, Anton P.J. Zhao, Chun-Xia |
author_sort | Peters, Brenton C. |
collection | PubMed |
description | Various pesticide nanocarriers have been developed. However, their pest-control applications remain limited in laboratories. Herein, we developed silica nanocapsules encapsulating fipronil (SNC) and their engineered form, poly(ethyleneimine)-coated SNC (SNC-PEI), based on recombinant catalytic modular protein D4S2 and used them against termite colonies Coptotermes lacteus in fields. To achieve this, an integrated biomolecular bioprocess was developed to produce D4S2 for manufacturing SNC containing fipronil with high encapsulation efficiency of approximately 97% at benign reaction conditions and at scales sufficient for the field applications. PEI coating was achieved via electrostatic interactions to yield SNC-PEI with a slower release of fipronil than SNC without coating. As a proof-of-concept, bait toxicants containing varied fipronil concentrations were formulated and exposed to nine termite mounds, aiming to prolong fipronil release hence allowing sufficient time for termites to relocate the baits into and distribute throughout the colony, and to eliminate that colony. Some baits were relocated into the mounds, but colonies were not eliminated due to several reasons. We caution others interested in producing bait toxicants to be aware of the multilevel resistance mechanisms of the Coptotermes spp. “superorganism”. |
format | Online Article Text |
id | pubmed-6699461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-66994612019-08-22 Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields Peters, Brenton C. Wibowo, David Yang, Guang-Ze Hui, Yue Middelberg, Anton P.J. Zhao, Chun-Xia Heliyon Article Various pesticide nanocarriers have been developed. However, their pest-control applications remain limited in laboratories. Herein, we developed silica nanocapsules encapsulating fipronil (SNC) and their engineered form, poly(ethyleneimine)-coated SNC (SNC-PEI), based on recombinant catalytic modular protein D4S2 and used them against termite colonies Coptotermes lacteus in fields. To achieve this, an integrated biomolecular bioprocess was developed to produce D4S2 for manufacturing SNC containing fipronil with high encapsulation efficiency of approximately 97% at benign reaction conditions and at scales sufficient for the field applications. PEI coating was achieved via electrostatic interactions to yield SNC-PEI with a slower release of fipronil than SNC without coating. As a proof-of-concept, bait toxicants containing varied fipronil concentrations were formulated and exposed to nine termite mounds, aiming to prolong fipronil release hence allowing sufficient time for termites to relocate the baits into and distribute throughout the colony, and to eliminate that colony. Some baits were relocated into the mounds, but colonies were not eliminated due to several reasons. We caution others interested in producing bait toxicants to be aware of the multilevel resistance mechanisms of the Coptotermes spp. “superorganism”. Elsevier 2019-08-10 /pmc/articles/PMC6699461/ /pubmed/31440604 http://dx.doi.org/10.1016/j.heliyon.2019.e02277 Text en © 2019 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Peters, Brenton C. Wibowo, David Yang, Guang-Ze Hui, Yue Middelberg, Anton P.J. Zhao, Chun-Xia Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
title | Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
title_full | Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
title_fullStr | Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
title_full_unstemmed | Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
title_short | Evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
title_sort | evaluation of baiting fipronil-loaded silica nanocapsules against termite colonies in fields |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699461/ https://www.ncbi.nlm.nih.gov/pubmed/31440604 http://dx.doi.org/10.1016/j.heliyon.2019.e02277 |
work_keys_str_mv | AT petersbrentonc evaluationofbaitingfipronilloadedsilicananocapsulesagainsttermitecoloniesinfields AT wibowodavid evaluationofbaitingfipronilloadedsilicananocapsulesagainsttermitecoloniesinfields AT yangguangze evaluationofbaitingfipronilloadedsilicananocapsulesagainsttermitecoloniesinfields AT huiyue evaluationofbaitingfipronilloadedsilicananocapsulesagainsttermitecoloniesinfields AT middelbergantonpj evaluationofbaitingfipronilloadedsilicananocapsulesagainsttermitecoloniesinfields AT zhaochunxia evaluationofbaitingfipronilloadedsilicananocapsulesagainsttermitecoloniesinfields |