Cargando…

COMP-Ang1 Stabilizes Hyperglycemic Disruption of Blood-Retinal Barrier Phenotype in Human Retinal Microvascular Endothelial Cells

PURPOSE: Current treatments for diabetic retinopathy (DR) have considerable limitations, underpinning the need for new therapeutic options. In this article, the ability of an engineered angiopoietin-1 variant (COMP-Ang1) to ameliorate the injurious effects of hyperglycemia on barrier integrity in a...

Descripción completa

Detalles Bibliográficos
Autores principales: Rochfort, Keith D., Carroll, Lara S., Barabas, Peter, Curtis, Timothy M., Ambati, Balamurali K., Barron, Niall, Cummins, Philip M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6699794/
https://www.ncbi.nlm.nih.gov/pubmed/31415078
http://dx.doi.org/10.1167/iovs.19-27644
Descripción
Sumario:PURPOSE: Current treatments for diabetic retinopathy (DR) have considerable limitations, underpinning the need for new therapeutic options. In this article, the ability of an engineered angiopoietin-1 variant (COMP-Ang1) to ameliorate the injurious effects of hyperglycemia on barrier integrity in a human retinal microvascular endothelial cell (HRMvEC) model is comprehensively investigated. METHODS: Confluent HRMvECs were treated (0–72 hours) with d-glucose (5 or 30 mM) in the absence and presence of COMP-Ang1 (10–200 ng/mL). l-glucose (30 mM) was used as osmotic control. Posttreatment, intact cell monolayers were monitored for permeability to FITC-dextran 40 kDa. Cells were also harvested for analysis of interendothelial junction targets by RT-qPCR and Western blotting. The impact of receptor tyrosine kinase Tie2 gene silencing on COMP-Ang1 efficacy was also evaluated. RESULTS: Treatment with 30 mM d-glucose (but not l-glucose) demonstrated a time-dependent elevation in the mean rate of FITC-dextran diffusion across intact HRMvEC monolayers, in parallel with significant reductions in mRNA/protein levels of occludin, claudin-5, ZO-1, and VE-Cadherin. These effects were all attenuated by COMP-Ang1 in a concentration-dependent fashion, with 200 ng/mL recovering barrier function by ∼88%, and recovering reduced interendothelial junction protein levels by more than 50%. Finally, Tie2 knockdown by small interfering RNA silencing blocked the ability of COMP-Ang1 to mitigate against hyperglycemia-induced permeabilization of HRMvECs and depletion of junctional expression levels. CONCLUSIONS: In summary, this article presents a reproducible in vitro cell study that quantifies the concentration-dependent efficacy of COMP-Ang1 to mitigate the injurious effects of hyperglycemic challenge on HRMvEC barrier properties via Tie2-mediated signaling.