Cargando…
Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of tra...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700160/ https://www.ncbi.nlm.nih.gov/pubmed/31427643 http://dx.doi.org/10.1038/s41598-019-48493-7 |
_version_ | 1783444810488610816 |
---|---|
author | Fernandes, Sunjay Jude Morikawa, Hiromasa Ewing, Ewoud Ruhrmann, Sabrina Joshi, Rubin Narayan Lagani, Vincenzo Karathanasis, Nestoras Khademi, Mohsen Planell, Nuria Schmidt, Angelika Tsamardinos, Ioannis Olsson, Tomas Piehl, Fredrik Kockum, Ingrid Jagodic, Maja Tegnér, Jesper Gomez-Cabrero, David |
author_facet | Fernandes, Sunjay Jude Morikawa, Hiromasa Ewing, Ewoud Ruhrmann, Sabrina Joshi, Rubin Narayan Lagani, Vincenzo Karathanasis, Nestoras Khademi, Mohsen Planell, Nuria Schmidt, Angelika Tsamardinos, Ioannis Olsson, Tomas Piehl, Fredrik Kockum, Ingrid Jagodic, Maja Tegnér, Jesper Gomez-Cabrero, David |
author_sort | Fernandes, Sunjay Jude |
collection | PubMed |
description | Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials. |
format | Online Article Text |
id | pubmed-6700160 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67001602019-08-21 Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients Fernandes, Sunjay Jude Morikawa, Hiromasa Ewing, Ewoud Ruhrmann, Sabrina Joshi, Rubin Narayan Lagani, Vincenzo Karathanasis, Nestoras Khademi, Mohsen Planell, Nuria Schmidt, Angelika Tsamardinos, Ioannis Olsson, Tomas Piehl, Fredrik Kockum, Ingrid Jagodic, Maja Tegnér, Jesper Gomez-Cabrero, David Sci Rep Article Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials. Nature Publishing Group UK 2019-08-19 /pmc/articles/PMC6700160/ /pubmed/31427643 http://dx.doi.org/10.1038/s41598-019-48493-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Fernandes, Sunjay Jude Morikawa, Hiromasa Ewing, Ewoud Ruhrmann, Sabrina Joshi, Rubin Narayan Lagani, Vincenzo Karathanasis, Nestoras Khademi, Mohsen Planell, Nuria Schmidt, Angelika Tsamardinos, Ioannis Olsson, Tomas Piehl, Fredrik Kockum, Ingrid Jagodic, Maja Tegnér, Jesper Gomez-Cabrero, David Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients |
title | Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients |
title_full | Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients |
title_fullStr | Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients |
title_full_unstemmed | Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients |
title_short | Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients |
title_sort | non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in t cells of multiple sclerosis patients |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700160/ https://www.ncbi.nlm.nih.gov/pubmed/31427643 http://dx.doi.org/10.1038/s41598-019-48493-7 |
work_keys_str_mv | AT fernandessunjayjude nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT morikawahiromasa nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT ewingewoud nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT ruhrmannsabrina nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT joshirubinnarayan nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT laganivincenzo nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT karathanasisnestoras nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT khademimohsen nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT planellnuria nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT schmidtangelika nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT tsamardinosioannis nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT olssontomas nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT piehlfredrik nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT kockumingrid nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT jagodicmaja nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT tegnerjesper nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients AT gomezcabrerodavid nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients |