Cargando…

Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients

Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of tra...

Descripción completa

Detalles Bibliográficos
Autores principales: Fernandes, Sunjay Jude, Morikawa, Hiromasa, Ewing, Ewoud, Ruhrmann, Sabrina, Joshi, Rubin Narayan, Lagani, Vincenzo, Karathanasis, Nestoras, Khademi, Mohsen, Planell, Nuria, Schmidt, Angelika, Tsamardinos, Ioannis, Olsson, Tomas, Piehl, Fredrik, Kockum, Ingrid, Jagodic, Maja, Tegnér, Jesper, Gomez-Cabrero, David
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700160/
https://www.ncbi.nlm.nih.gov/pubmed/31427643
http://dx.doi.org/10.1038/s41598-019-48493-7
_version_ 1783444810488610816
author Fernandes, Sunjay Jude
Morikawa, Hiromasa
Ewing, Ewoud
Ruhrmann, Sabrina
Joshi, Rubin Narayan
Lagani, Vincenzo
Karathanasis, Nestoras
Khademi, Mohsen
Planell, Nuria
Schmidt, Angelika
Tsamardinos, Ioannis
Olsson, Tomas
Piehl, Fredrik
Kockum, Ingrid
Jagodic, Maja
Tegnér, Jesper
Gomez-Cabrero, David
author_facet Fernandes, Sunjay Jude
Morikawa, Hiromasa
Ewing, Ewoud
Ruhrmann, Sabrina
Joshi, Rubin Narayan
Lagani, Vincenzo
Karathanasis, Nestoras
Khademi, Mohsen
Planell, Nuria
Schmidt, Angelika
Tsamardinos, Ioannis
Olsson, Tomas
Piehl, Fredrik
Kockum, Ingrid
Jagodic, Maja
Tegnér, Jesper
Gomez-Cabrero, David
author_sort Fernandes, Sunjay Jude
collection PubMed
description Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials.
format Online
Article
Text
id pubmed-6700160
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-67001602019-08-21 Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients Fernandes, Sunjay Jude Morikawa, Hiromasa Ewing, Ewoud Ruhrmann, Sabrina Joshi, Rubin Narayan Lagani, Vincenzo Karathanasis, Nestoras Khademi, Mohsen Planell, Nuria Schmidt, Angelika Tsamardinos, Ioannis Olsson, Tomas Piehl, Fredrik Kockum, Ingrid Jagodic, Maja Tegnér, Jesper Gomez-Cabrero, David Sci Rep Article Multiple Sclerosis (MS) is an autoimmune disease of the central nervous system with prominent neurodegenerative components. The triggering and progression of MS is associated with transcriptional and epigenetic alterations in several tissues, including peripheral blood. The combined influence of transcriptional and epigenetic changes associated with MS has not been assessed in the same individuals. Here we generated paired transcriptomic (RNA-seq) and DNA methylation (Illumina 450 K array) profiles of CD4+ and CD8+ T cells (CD4, CD8), using clinically accessible blood from healthy donors and MS patients in the initial relapsing-remitting and subsequent secondary-progressive stage. By integrating the output of a differential expression test with a permutation-based non-parametric combination methodology, we identified 149 differentially expressed (DE) genes in both CD4 and CD8 cells collected from MS patients. Moreover, by leveraging the methylation-dependent regulation of gene expression, we identified the gene SH3YL1, which displayed significant correlated expression and methylation changes in MS patients. Importantly, silencing of SH3YL1 in primary human CD4 cells demonstrated its influence on T cell activation. Collectively, our strategy based on paired sampling of several cell-types provides a novel approach to increase sensitivity for identifying shared mechanisms altered in CD4 and CD8 cells of relevance in MS in small sized clinical materials. Nature Publishing Group UK 2019-08-19 /pmc/articles/PMC6700160/ /pubmed/31427643 http://dx.doi.org/10.1038/s41598-019-48493-7 Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Fernandes, Sunjay Jude
Morikawa, Hiromasa
Ewing, Ewoud
Ruhrmann, Sabrina
Joshi, Rubin Narayan
Lagani, Vincenzo
Karathanasis, Nestoras
Khademi, Mohsen
Planell, Nuria
Schmidt, Angelika
Tsamardinos, Ioannis
Olsson, Tomas
Piehl, Fredrik
Kockum, Ingrid
Jagodic, Maja
Tegnér, Jesper
Gomez-Cabrero, David
Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
title Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
title_full Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
title_fullStr Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
title_full_unstemmed Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
title_short Non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in T cells of multiple sclerosis patients
title_sort non-parametric combination analysis of multiple data types enables detection of novel regulatory mechanisms in t cells of multiple sclerosis patients
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700160/
https://www.ncbi.nlm.nih.gov/pubmed/31427643
http://dx.doi.org/10.1038/s41598-019-48493-7
work_keys_str_mv AT fernandessunjayjude nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT morikawahiromasa nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT ewingewoud nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT ruhrmannsabrina nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT joshirubinnarayan nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT laganivincenzo nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT karathanasisnestoras nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT khademimohsen nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT planellnuria nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT schmidtangelika nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT tsamardinosioannis nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT olssontomas nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT piehlfredrik nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT kockumingrid nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT jagodicmaja nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT tegnerjesper nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients
AT gomezcabrerodavid nonparametriccombinationanalysisofmultipledatatypesenablesdetectionofnovelregulatorymechanismsintcellsofmultiplesclerosispatients