Cargando…
Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach
Date pits (DPs) have been recycled into a low-cost adsorbent for removing of selected heavy metals (HMs) from artificially contaminated aqueous solutions. Adsorption of targeted HMs, both by raw date pits (RDP) and burnt date pits (BDP) was tested. Results showed that BDP is more efficient as an ads...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700247/ https://www.ncbi.nlm.nih.gov/pubmed/31457003 http://dx.doi.org/10.3389/fchem.2019.00552 |
_version_ | 1783444831205326848 |
---|---|
author | Al-Saad, Khalid El-Azazy, Marwa Issa, Ahmed A. Al-Yafie, Asma El-Shafie, Ahmed S. Al-Sulaiti, Maetha Shomar, Basem |
author_facet | Al-Saad, Khalid El-Azazy, Marwa Issa, Ahmed A. Al-Yafie, Asma El-Shafie, Ahmed S. Al-Sulaiti, Maetha Shomar, Basem |
author_sort | Al-Saad, Khalid |
collection | PubMed |
description | Date pits (DPs) have been recycled into a low-cost adsorbent for removing of selected heavy metals (HMs) from artificially contaminated aqueous solutions. Adsorption of targeted HMs, both by raw date pits (RDP) and burnt date pits (BDP) was tested. Results showed that BDP is more efficient as an adsorbent and mostly adsorbing Cu(II). A novel approach; fractional factorial design (2(k−p) – FrFD) was used to build the experimental pattern of this study. The effects of four factors on the maximum percentage (%) of removal (Y) were considered; pH, adsorbent dose (AD), heavy metal concentration (HMC), and contact time (CT). Statistically significant variables were detected using Pareto chart of standardized effects, normal and half-normal plots together with analysis of variance (ANOVA) at 95.0 confidence intervals (CI). Optimizing (maximizing) the percentage (%) removal of Cu(II) by BDP, was performed using optimization plots. Results showed that the factors: pH and adsorbent dose (AD) affect the response positively. Scanning electron microscopy (SEM) was used to study the surface morphology of both adsorbents while fourier-transform infrared spectroscopy (FTIR) was employed to get an idea on the functional groups on the surface and hence the adsorption mechanism. Raman spectroscopy was used to characterize the prepared adsorbents before and after adsorption of Cu(II). Equilibrium studies show that the adsorption behavior differs according to the equilibrium concentration. In general, it follows Langmuir isotherm up to 155 ppm, then Freundlich isotherm. Free energy of adsorption (ΔG(ad)) is −28.07 kJ/mole, when equilibrium concentration is below 155 ppm, so the adsorption process is spontaneous, while (ΔG(ad)) equals +17.89 kJ/mole above 155 ppm, implying that the process is non-spontaneous. Furthermore, the adsorption process is a mixture of physisorption and chemisorption processes, which could be endothermic or exothermic reactions. The adsorption kinetics were described using a second order model. |
format | Online Article Text |
id | pubmed-6700247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-67002472019-08-27 Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach Al-Saad, Khalid El-Azazy, Marwa Issa, Ahmed A. Al-Yafie, Asma El-Shafie, Ahmed S. Al-Sulaiti, Maetha Shomar, Basem Front Chem Chemistry Date pits (DPs) have been recycled into a low-cost adsorbent for removing of selected heavy metals (HMs) from artificially contaminated aqueous solutions. Adsorption of targeted HMs, both by raw date pits (RDP) and burnt date pits (BDP) was tested. Results showed that BDP is more efficient as an adsorbent and mostly adsorbing Cu(II). A novel approach; fractional factorial design (2(k−p) – FrFD) was used to build the experimental pattern of this study. The effects of four factors on the maximum percentage (%) of removal (Y) were considered; pH, adsorbent dose (AD), heavy metal concentration (HMC), and contact time (CT). Statistically significant variables were detected using Pareto chart of standardized effects, normal and half-normal plots together with analysis of variance (ANOVA) at 95.0 confidence intervals (CI). Optimizing (maximizing) the percentage (%) removal of Cu(II) by BDP, was performed using optimization plots. Results showed that the factors: pH and adsorbent dose (AD) affect the response positively. Scanning electron microscopy (SEM) was used to study the surface morphology of both adsorbents while fourier-transform infrared spectroscopy (FTIR) was employed to get an idea on the functional groups on the surface and hence the adsorption mechanism. Raman spectroscopy was used to characterize the prepared adsorbents before and after adsorption of Cu(II). Equilibrium studies show that the adsorption behavior differs according to the equilibrium concentration. In general, it follows Langmuir isotherm up to 155 ppm, then Freundlich isotherm. Free energy of adsorption (ΔG(ad)) is −28.07 kJ/mole, when equilibrium concentration is below 155 ppm, so the adsorption process is spontaneous, while (ΔG(ad)) equals +17.89 kJ/mole above 155 ppm, implying that the process is non-spontaneous. Furthermore, the adsorption process is a mixture of physisorption and chemisorption processes, which could be endothermic or exothermic reactions. The adsorption kinetics were described using a second order model. Frontiers Media S.A. 2019-08-13 /pmc/articles/PMC6700247/ /pubmed/31457003 http://dx.doi.org/10.3389/fchem.2019.00552 Text en Copyright © 2019 Al-Saad, El-Azazy, Issa, Al-Yafie, El-Shafie, Al-Sulaiti and Shomar. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Al-Saad, Khalid El-Azazy, Marwa Issa, Ahmed A. Al-Yafie, Asma El-Shafie, Ahmed S. Al-Sulaiti, Maetha Shomar, Basem Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach |
title | Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach |
title_full | Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach |
title_fullStr | Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach |
title_full_unstemmed | Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach |
title_short | Recycling of Date Pits Into a Green Adsorbent for Removal of Heavy Metals: A Fractional Factorial Design-Based Approach |
title_sort | recycling of date pits into a green adsorbent for removal of heavy metals: a fractional factorial design-based approach |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700247/ https://www.ncbi.nlm.nih.gov/pubmed/31457003 http://dx.doi.org/10.3389/fchem.2019.00552 |
work_keys_str_mv | AT alsaadkhalid recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach AT elazazymarwa recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach AT issaahmeda recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach AT alyafieasma recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach AT elshafieahmeds recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach AT alsulaitimaetha recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach AT shomarbasem recyclingofdatepitsintoagreenadsorbentforremovalofheavymetalsafractionalfactorialdesignbasedapproach |