Cargando…
Back-Propagation Learning in Deep Spike-By-Spike Networks
Artificial neural networks (ANNs) are important building blocks in technical applications. They rely on noiseless continuous signals in stark contrast to the discrete action potentials stochastically exchanged among the neurons in real brains. We propose to bridge this gap with Spike-by-Spike (SbS)...
Autores principales: | Rotermund, David, Pawelzik, Klaus R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6700320/ https://www.ncbi.nlm.nih.gov/pubmed/31456677 http://dx.doi.org/10.3389/fncom.2019.00055 |
Ejemplares similares
-
Compressed sensing with stochastic spikes
por: Rotermund, David, et al.
Publicado: (2011) -
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021) -
Meta-SpikePropamine: learning to learn with synaptic plasticity in spiking neural networks
por: Schmidgall, Samuel, et al.
Publicado: (2023) -
Commentary: Feedback stabilizes propagation of synchronous spiking in cortical neural networks
por: Claverol-Tinturé, Enric, et al.
Publicado: (2015) -
Neuronal-Plasticity and Reward-Propagation Improved Recurrent Spiking Neural Networks
por: Jia, Shuncheng, et al.
Publicado: (2021)