Cargando…
Automated detection of altered mental status in emergency department clinical notes: a deep learning approach
BACKGROUND: Machine learning has been used extensively in clinical text classification tasks. Deep learning approaches using word embeddings have been recently gaining momentum in biomedical applications. In an effort to automate the identification of altered mental status (AMS) in emergency departm...
Autores principales: | Obeid, Jihad S., Weeda, Erin R., Matuskowitz, Andrew J., Gagnon, Kevin, Crawford, Tami, Carr, Christine M., Frey, Lewis J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701023/ https://www.ncbi.nlm.nih.gov/pubmed/31426779 http://dx.doi.org/10.1186/s12911-019-0894-9 |
Ejemplares similares
-
Impact of De-Identification on Clinical Text Classification Using
Traditional and Deep Learning Classifiers
por: Obeid, Jihad S., et al.
Publicado: (2019) -
Identifying and Predicting Intentional Self-Harm in Electronic Health Record Clinical Notes: Deep Learning Approach
por: Obeid, Jihad S, et al.
Publicado: (2020) -
Feasibility and Impact of the Combined Application of Coronary CT Angiography With the HEART Pathway in Patients With Suspected Acute Coronary Syndrome
por: Matuskowitz, Andrew J., et al.
Publicado: (2021) -
Systematic Review of Real-World Studies Evaluating Characteristics
Associated With or Programs Designed to Facilitate Outpatient Management of Deep
Vein Thrombosis
por: Weeda, Erin R., et al.
Publicado: (2018) -
Automated analysis of high‐content microscopy data with deep learning
por: Kraus, Oren Z, et al.
Publicado: (2017)