Cargando…

An Enhanced Lightning Attachment Procedure Optimization with Quasi-Opposition-Based Learning and Dimensional Search Strategies

Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced versi...

Descripción completa

Detalles Bibliográficos
Autores principales: Zheng, Tongyi, Luo, Weili
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6701370/
https://www.ncbi.nlm.nih.gov/pubmed/31467516
http://dx.doi.org/10.1155/2019/1589303
Descripción
Sumario:Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To obtain better global searching ability, an enhanced version of LAPO called ELAPO has been proposed in this paper. A quasi-opposition-based learning strategy is incorporated to improve both exploration and exploitation abilities by considering an estimate and its opposite simultaneously. Moreover, a dimensional search enhancement strategy is proposed to intensify the exploitation ability of the algorithm. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are utilized to test the effectiveness of the proposed algorithm. Numerical results indicate that ELAPO can provide better or competitive performance compared with the basic LAPO and other five state-of-the-art optimization algorithms.