Cargando…

Comparative anti-osteoporotic properties of the leaves and roots of Marantodes pumilum var. alata in postmenopausal rat model

BACKGROUND: Marantodes pumilum var. alata (MPva), popularly known as Kacip Fatimah, is widely used to maintain female reproductive health, facilitate post-partum recovery and manage symptoms of menopause and osteoporosis in South-East Asia. This study aims to further evaluate the osteoprotective pot...

Descripción completa

Detalles Bibliográficos
Autores principales: Giaze, Tijjani Rabiu, Shuid, Ahmad Nazrun, Soelaiman, Ima Nirwana, Muhammad, Norliza, Jamal, Jamia Azdina, Fauzi, Mh Busra, Mohamed, Norazlina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702132/
https://www.ncbi.nlm.nih.gov/pubmed/31453136
http://dx.doi.org/10.1016/j.jtcme.2019.01.002
Descripción
Sumario:BACKGROUND: Marantodes pumilum var. alata (MPva), popularly known as Kacip Fatimah, is widely used to maintain female reproductive health, facilitate post-partum recovery and manage symptoms of menopause and osteoporosis in South-East Asia. This study aims to further evaluate the osteoprotective potential of MPva in view of reports of its bone-protective properties in postmenopausal condition. METHODS: Thirty female Sprague-Dawley rats were sorted into 5 groups (n = 6) namely: MPv (leaf treatment); MPr (root treatment); ERT (estrogen treatment); OVXC (untreated ovariectomized control) and Sham (untreated sham-operated control). All rats (except the Sham) were ovariectomized to induce a state of estrogen deficiency that simulates menopause. Two weeks after ovariectomy, the rats were treated for 8 weeks with oral gavages of estrogen and plant extracts. The ERT group received 64.5 μg/kg/day dose of estrogen while MPv and MPr groups received 20 mg/kg/day dose of leaf and root extracts, respectively. At the end of treatment, left femora were excised from euthanized rats and investigated for changes in bone micro-architecture, mineral density, and biomechanical properties. RESULTS: Bone volume fraction, degree of anisotropy and structure-model-index of bone were significantly improved (p < 0.05) in the MPv group compared to OVXC. Breaking force and maximum stress of bone were also significantly higher (p < 0.05) in the MPv group compared to the OVXC. CONCLUSION: Treatment with MPva leaf protected bone microarchitecture and density against osteoporosis-related changes in postmenopausal rats. Similar to estrogen, the protective effects of MPva leaf translated into better-enhanced bone mechanical properties compared to the root treatment.