Cargando…
Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae
Extensive transcriptional activity occurring in intergenic regions of genomes has raised the question whether intergenic transcription represents the activity of novel genes or noisy expression. To address this, we evaluated cross-species and post-duplication sequence and expression conservation of...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702216/ https://www.ncbi.nlm.nih.gov/pubmed/31431676 http://dx.doi.org/10.1038/s41598-019-47797-y |
_version_ | 1783445179153252352 |
---|---|
author | Lloyd, John P. Bowman, Megan J. Azodi, Christina B. Sowers, Rosalie P. Moghe, Gaurav D. Childs, Kevin L. Shiu, Shin-Han |
author_facet | Lloyd, John P. Bowman, Megan J. Azodi, Christina B. Sowers, Rosalie P. Moghe, Gaurav D. Childs, Kevin L. Shiu, Shin-Han |
author_sort | Lloyd, John P. |
collection | PubMed |
description | Extensive transcriptional activity occurring in intergenic regions of genomes has raised the question whether intergenic transcription represents the activity of novel genes or noisy expression. To address this, we evaluated cross-species and post-duplication sequence and expression conservation of intergenic transcribed regions (ITRs) in four Poaceae species. Among 43,301 ITRs across the four species, 34,460 (80%) are species-specific. ITRs found across species tend to be more divergent in expression and have more recent duplicates compared to annotated genes. To assess if ITRs are functional (under selection), machine learning models were established in Oryza sativa (rice) that could accurately distinguish between phenotype genes and pseudogenes (area under curve-receiver operating characteristic = 0.94). Based on the models, 584 (8%) and 4391 (61%) rice ITRs are classified as likely functional and nonfunctional with high confidence, respectively. ITRs with conserved expression and ancient retained duplicates, features that were not part of the model, are frequently classified as likely-functional, suggesting these characteristics could serve as pragmatic rules of thumb for identifying candidate sequences likely to be under selection. This study also provides a framework to identify novel genes using comparative transcriptomic data to improve genome annotation that is fundamental for connecting genotype to phenotype in crop and model systems. |
format | Online Article Text |
id | pubmed-6702216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-67022162019-08-23 Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae Lloyd, John P. Bowman, Megan J. Azodi, Christina B. Sowers, Rosalie P. Moghe, Gaurav D. Childs, Kevin L. Shiu, Shin-Han Sci Rep Article Extensive transcriptional activity occurring in intergenic regions of genomes has raised the question whether intergenic transcription represents the activity of novel genes or noisy expression. To address this, we evaluated cross-species and post-duplication sequence and expression conservation of intergenic transcribed regions (ITRs) in four Poaceae species. Among 43,301 ITRs across the four species, 34,460 (80%) are species-specific. ITRs found across species tend to be more divergent in expression and have more recent duplicates compared to annotated genes. To assess if ITRs are functional (under selection), machine learning models were established in Oryza sativa (rice) that could accurately distinguish between phenotype genes and pseudogenes (area under curve-receiver operating characteristic = 0.94). Based on the models, 584 (8%) and 4391 (61%) rice ITRs are classified as likely functional and nonfunctional with high confidence, respectively. ITRs with conserved expression and ancient retained duplicates, features that were not part of the model, are frequently classified as likely-functional, suggesting these characteristics could serve as pragmatic rules of thumb for identifying candidate sequences likely to be under selection. This study also provides a framework to identify novel genes using comparative transcriptomic data to improve genome annotation that is fundamental for connecting genotype to phenotype in crop and model systems. Nature Publishing Group UK 2019-08-20 /pmc/articles/PMC6702216/ /pubmed/31431676 http://dx.doi.org/10.1038/s41598-019-47797-y Text en © The Author(s) 2019 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Lloyd, John P. Bowman, Megan J. Azodi, Christina B. Sowers, Rosalie P. Moghe, Gaurav D. Childs, Kevin L. Shiu, Shin-Han Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae |
title | Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae |
title_full | Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae |
title_fullStr | Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae |
title_full_unstemmed | Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae |
title_short | Evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the Poaceae |
title_sort | evolutionary characteristics of intergenic transcribed regions indicate rare novel genes and widespread noisy transcription in the poaceae |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702216/ https://www.ncbi.nlm.nih.gov/pubmed/31431676 http://dx.doi.org/10.1038/s41598-019-47797-y |
work_keys_str_mv | AT lloydjohnp evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae AT bowmanmeganj evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae AT azodichristinab evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae AT sowersrosaliep evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae AT moghegauravd evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae AT childskevinl evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae AT shiushinhan evolutionarycharacteristicsofintergenictranscribedregionsindicaterarenovelgenesandwidespreadnoisytranscriptioninthepoaceae |