Cargando…
Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit
BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used to manage cardiopulmonary failure refractory to conventional medical and surgical therapies. Despite advances in ECMO equipment, bleeding and thrombosis remain significant complications. While the flow rate for ECM...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702240/ https://www.ncbi.nlm.nih.gov/pubmed/31432279 http://dx.doi.org/10.1186/s40635-019-0264-z |
_version_ | 1783445185313636352 |
---|---|
author | Ki, Katrina K. Passmore, Margaret R. Chan, Chris H. H. Malfertheiner, Maximilian V. Fanning, Jonathon P. Bouquet, Mahé Millar, Jonathan E. Fraser, John F. Suen, Jacky Y. |
author_facet | Ki, Katrina K. Passmore, Margaret R. Chan, Chris H. H. Malfertheiner, Maximilian V. Fanning, Jonathon P. Bouquet, Mahé Millar, Jonathan E. Fraser, John F. Suen, Jacky Y. |
author_sort | Ki, Katrina K. |
collection | PubMed |
description | BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used to manage cardiopulmonary failure refractory to conventional medical and surgical therapies. Despite advances in ECMO equipment, bleeding and thrombosis remain significant complications. While the flow rate for ECMO support is well recognized, less is known about the minimum-rate requirements and haemostasis. We investigated the relationship between different ECMO flow rates, and their effect on haemolysis and coagulation. METHODS: Ten ex-vivo ECMO circuits were tested using donated, < 24-h-old human whole blood, with two flow rates: high-flow at 4 L/min (normal adult cardiac output; n = 5) and low-flow at 1.5 L/min (weaning; n = 5). Serial blood samples were taken for analysis of haemolysis, von Willebrand factor (vWF) multimers by immunoblotting, rotational thromboelastometry, platelet aggregometry, flow cytometry and routine coagulation laboratory tests. RESULTS: Low-flow rates increased haemolysis after 2 h (p = 0.02), 4 h (p = 0.02) and 6 h (p = 0.02) and the loss of high-molecular-weight vWF multimers (p = 0.01), while reducing ristocetin-induced platelet aggregation (p = 0.0002). Additionally, clot formation times were prolonged (p = 0.006), with a corresponding decrease in maximum clot firmness (p = 0.006). CONCLUSIONS: In an ex-vivo model of ECMO, low-flow rate (1.5 L/min) altered haemostatic parameters compared to high-flow (4 L/min). Observed differences in haemolysis, ristocetin-induced platelet aggregation, high-molecular-weight vWF multimers and clot formation time suggest an increased risk of bleeding complications. Since patients are often on ECMO for protracted periods, extended-duration studies are required to characterise long-term ECMO-induced haemostatic changes. |
format | Online Article Text |
id | pubmed-6702240 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-67022402019-09-02 Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit Ki, Katrina K. Passmore, Margaret R. Chan, Chris H. H. Malfertheiner, Maximilian V. Fanning, Jonathon P. Bouquet, Mahé Millar, Jonathan E. Fraser, John F. Suen, Jacky Y. Intensive Care Med Exp Research BACKGROUND: Extracorporeal membrane oxygenation (ECMO) is a life-saving modality used to manage cardiopulmonary failure refractory to conventional medical and surgical therapies. Despite advances in ECMO equipment, bleeding and thrombosis remain significant complications. While the flow rate for ECMO support is well recognized, less is known about the minimum-rate requirements and haemostasis. We investigated the relationship between different ECMO flow rates, and their effect on haemolysis and coagulation. METHODS: Ten ex-vivo ECMO circuits were tested using donated, < 24-h-old human whole blood, with two flow rates: high-flow at 4 L/min (normal adult cardiac output; n = 5) and low-flow at 1.5 L/min (weaning; n = 5). Serial blood samples were taken for analysis of haemolysis, von Willebrand factor (vWF) multimers by immunoblotting, rotational thromboelastometry, platelet aggregometry, flow cytometry and routine coagulation laboratory tests. RESULTS: Low-flow rates increased haemolysis after 2 h (p = 0.02), 4 h (p = 0.02) and 6 h (p = 0.02) and the loss of high-molecular-weight vWF multimers (p = 0.01), while reducing ristocetin-induced platelet aggregation (p = 0.0002). Additionally, clot formation times were prolonged (p = 0.006), with a corresponding decrease in maximum clot firmness (p = 0.006). CONCLUSIONS: In an ex-vivo model of ECMO, low-flow rate (1.5 L/min) altered haemostatic parameters compared to high-flow (4 L/min). Observed differences in haemolysis, ristocetin-induced platelet aggregation, high-molecular-weight vWF multimers and clot formation time suggest an increased risk of bleeding complications. Since patients are often on ECMO for protracted periods, extended-duration studies are required to characterise long-term ECMO-induced haemostatic changes. Springer International Publishing 2019-08-20 /pmc/articles/PMC6702240/ /pubmed/31432279 http://dx.doi.org/10.1186/s40635-019-0264-z Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Ki, Katrina K. Passmore, Margaret R. Chan, Chris H. H. Malfertheiner, Maximilian V. Fanning, Jonathon P. Bouquet, Mahé Millar, Jonathan E. Fraser, John F. Suen, Jacky Y. Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
title | Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
title_full | Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
title_fullStr | Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
title_full_unstemmed | Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
title_short | Low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
title_sort | low flow rate alters haemostatic parameters in an ex-vivo extracorporeal membrane oxygenation circuit |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702240/ https://www.ncbi.nlm.nih.gov/pubmed/31432279 http://dx.doi.org/10.1186/s40635-019-0264-z |
work_keys_str_mv | AT kikatrinak lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT passmoremargaretr lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT chanchrishh lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT malfertheinermaximilianv lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT fanningjonathonp lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT bouquetmahe lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT millarjonathane lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT fraserjohnf lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit AT suenjackyy lowflowratealtershaemostaticparametersinanexvivoextracorporealmembraneoxygenationcircuit |