Cargando…

In vitro qualitative and quantitative CT assessment of iodinated aerosol nasal deposition using a 3D-printed nasal replica

Computed tomography can provide high-resolution details on nasal anatomy being potentially useful for the assessment of nasal spray deposition. The purpose of this technical note was to present a method based on CT imaging to assess qualitatively and quantitatively the in vitro spray deposition patt...

Descripción completa

Detalles Bibliográficos
Autores principales: Sartoretti, Thomas, Mannil, Manoj, Biendl, Stefan, Froehlich, Johannes M., Alkadhi, Hatem, Zadory, Matthias
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702290/
https://www.ncbi.nlm.nih.gov/pubmed/31432300
http://dx.doi.org/10.1186/s41747-019-0113-6
Descripción
Sumario:Computed tomography can provide high-resolution details on nasal anatomy being potentially useful for the assessment of nasal spray deposition. The purpose of this technical note was to present a method based on CT imaging to assess qualitatively and quantitatively the in vitro spray deposition patterns within the sinonasal cavities of a nasal replica obtained by three-dimensional (3D) printing, using iodinated contrast agent labelled solutions with high spatial and temporal resolution. Using a third generation dual-source CT scanner in single energy mode, scans of a nasal replica were acquired following application of iodinated contrast agent labelled aerosols with an iodine concentration of 92.5 mgl/mL. Two software programmes were then utilised (Osirix MD v.9.0, Pixmeo, Geneva, Switzerland; 3mensio, Pie Medical Imaging, Bilthoven, Netherlands) to generate three-dimensional reconstructions of the scans, thus enabling the rapid detection and visualisation of administered single droplets and their voxel-by-voxel localisation. Using this approach, we achieved recovery rates between 84–98% and 89–109% (depending on the software programme) of the total applied aerosol volume.