Cargando…

Analysis of Expression and Single Nucleotide Polymorphisms of INHA Gene Associated with Reproductive Traits in Chickens

Inhibin α (INHA) is a candidate gene controlling ovulation in poultry. As the functional center of inhibin, INHA is a molecular marker associated with egg-laying performance. The objective of the current study was to analyze the expression differences of INHA in reproductive system and single nucleo...

Descripción completa

Detalles Bibliográficos
Autores principales: Cui, Zhifu, Liu, Lingbin, Zhao, Xiaoling, Ran, Jinshan, Wang, Yan, Yin, Huadong, Li, Diyan, Zhu, Qing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6702802/
https://www.ncbi.nlm.nih.gov/pubmed/31485447
http://dx.doi.org/10.1155/2019/8572837
Descripción
Sumario:Inhibin α (INHA) is a candidate gene controlling ovulation in poultry. As the functional center of inhibin, INHA is a molecular marker associated with egg-laying performance. The objective of the current study was to analyze the expression differences of INHA in reproductive system and single nucleotide polymorphisms (SNPs) associations with reproductive traits in chickens. A total of 260 LuHua chickens (barred-feather chicken) were adopted. Twelve SNPs were detected in INHA gene. Among the exonic SNPs, three (g. 22177991A>G, g. 22178249G>C, and g. 22178414G>A) were missense mutations, resulting in the amino acid substitutions Val→Ala, Ala→Gly, and Ala→Gly, respectively. Four SNPs in the 3' untranslated region of INHA were predicted to either disturb or create microRNA-target interactions. Five SNPs (g. 22176870T>C, g. 22177100T>C, g. 22177149T>C, g. 22177991A>G, and g. 22178975G>A) were significantly associated with the number of eggs at 300 d of age (EN) (P < 0.05). Birds carrying GA genotype exhibited more EN than those with AA genotype (P < 0.01). In addition, quantitative real-time PCR revealed that INHA is mainly expressed in follicles on d 300 in chickens. Firstly, INHA expression increased and then decreased. The highest INHA mRNA abundance was found in the fifth largest preovulatory follicle (F5) (P < 0.01). In the prehierarchical follicles, INHA mRNA expression increased dramatically in small yellow follicles (SYF) (P < 0.01). Western blotting analysis showed that the INHA protein expression profile in the follicle was similar to its mRNA counterpart with greater expression in F5 and SYF follicles and lowest expression in F1 follicles (P < 0.05). These results suggest that INHA is a potential candidate gene improving reproductive traits in chickens.