Cargando…
Automatic Classification of Anterior Chamber Angle Using Ultrasound Biomicroscopy and Deep Learning
PURPOSE: To develop a software package for automated classification of anterior chamber angle of the eye by using ultrasound biomicroscopy. METHODS: Ultrasound biomicroscopy images were collected, and the trabecular-iris angle was manually measured and classified into three categories: open angle, n...
Autores principales: | Shi, Guohua, Jiang, Zhenying, Deng, Guohua, Liu, Guangxing, Zong, Yuan, Jiang, Chunhui, Chen, Qian, Lu, Yi, Sun, Xinhuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703191/ https://www.ncbi.nlm.nih.gov/pubmed/31448182 http://dx.doi.org/10.1167/tvst.8.4.25 |
Ejemplares similares
-
Automatic Anterior Chamber Angle Classification Using Deep Learning System and Anterior Segment Optical Coherence Tomography Images
por: Li, Wanyue, et al.
Publicado: (2021) -
A Deep Learning System for Automatic Assessment of Anterior Chamber Angle in Ultrasound Biomicroscopy Images
por: Wang, Wensai, et al.
Publicado: (2021) -
Age and Positional Effect on the Anterior Chamber Angle: Assessment by Ultrasound Biomicroscopy
por: Bell, Nicholas P., et al.
Publicado: (2013) -
Comparison of measurements of anterior chamber angle via anterior segment optical coherence tomography and ultrasound biomicroscopy
por: Yu, Zi-Yan, et al.
Publicado: (2020) -
Quantitative ultrasound biomicroscopy of iridocorneal angle
por: Mansoori, Tarannum
Publicado: (2023)