Cargando…

Heart rate recovery and morbidity after noncardiac surgery: Planned secondary analysis of two prospective, multi-centre, blinded observational studies

BACKGROUND: Impaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioper...

Descripción completa

Detalles Bibliográficos
Autores principales: Ackland, Gareth L., Abbott, Tom E. F., Minto, Gary, Clark, Martin, Owen, Thomas, Prabhu, Pradeep, May, Shaun M., Reynolds, Joseph A., Cuthbertson, Brian H., Wijesundera, Duminda, Pearse, Rupert M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703687/
https://www.ncbi.nlm.nih.gov/pubmed/31433825
http://dx.doi.org/10.1371/journal.pone.0221277
Descripción
Sumario:BACKGROUND: Impaired cardiac vagal function, quantified preoperatively as slower heart rate recovery (HRR) after exercise, is independently associated with perioperative myocardial injury. Parasympathetic (vagal) dysfunction may also promote (extra-cardiac) multi-organ dysfunction, although perioperative data are lacking. Assuming that cardiac vagal activity, and therefore heart rate recovery response, is a marker of brainstem parasympathetic dysfunction, we hypothesized that impaired HRR would be associated with a higher incidence of morbidity after noncardiac surgery. METHODS: In two prospective, blinded, observational cohort studies, we established the definition of impaired vagal function in terms of the HRR threshold that is associated with perioperative myocardial injury (HRR ≤ 12 beats min(-1) (bpm), 60 seconds after cessation of cardiopulmonary exercise testing. The primary outcome of this secondary analysis was all-cause morbidity three and five days after surgery, defined using the Post-Operative Morbidity Survey. Secondary outcomes of this analysis were type of morbidity and time to become morbidity-free. Logistic regression and Cox regression tested for the association between HRR and morbidity. Results are presented as odds/hazard ratios [OR or HR; (95% confidence intervals). RESULTS: 882/1941 (45.4%) patients had HRR≤12bpm. All-cause morbidity within 5 days of surgery was more common in 585/822 (71.2%) patients with HRR≤12bpm, compared to 718/1119 (64.2%) patients with HRR>12bpm (OR:1.38 (1.14–1.67); p = 0.001). HRR≤12bpm was associated with more frequent episodes of pulmonary (OR:1.31 (1.05–1.62);p = 0.02)), infective (OR:1.38 (1.10–1.72); p = 0.006), renal (OR:1.91 (1.30–2.79); p = 0.02)), cardiovascular (OR:1.39 (1.15–1.69); p<0.001)), neurological (OR:1.73 (1.11–2.70); p = 0.02)) and pain morbidity (OR:1.38 (1.14–1.68); p = 0.001) within 5 days of surgery. CONCLUSIONS: Multi-organ dysfunction is more common in surgical patients with cardiac vagal dysfunction, defined as HRR ≤ 12 bpm after preoperative cardiopulmonary exercise testing. CLINICAL TRIAL REGISTRY: ISRCTN88456378.