Cargando…

Cranial endocast of a stem platyrrhine primate and ancestral brain conditions in anthropoids

Understanding of ancestral conditions for anthropoids has been hampered by the paucity of well-preserved early fossils. Here, we provide an unprecedented view of the cerebral morphology of the 20-million-year-old Chilecebus carrascoensis, the best-preserved early diverging platyrrhine known, obtaine...

Descripción completa

Detalles Bibliográficos
Autores principales: Ni, Xijun, Flynn, John J., Wyss, André R., Zhang, Chi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703862/
https://www.ncbi.nlm.nih.gov/pubmed/31457077
http://dx.doi.org/10.1126/sciadv.aav7913
Descripción
Sumario:Understanding of ancestral conditions for anthropoids has been hampered by the paucity of well-preserved early fossils. Here, we provide an unprecedented view of the cerebral morphology of the 20-million-year-old Chilecebus carrascoensis, the best-preserved early diverging platyrrhine known, obtained via high-resolution CT scanning and 3D digital reconstruction. These analyses are crucial for reconstructing ancestral brain conditions in platyrrhines and anthropoids given the early diverging position of Chilecebus. Although small, the brain of Chilecebus is not lissencephalic and presents at least seven pairs of sulci on its endocast. Comparisons of Chilecebus and other basal anthropoids indicate that the major brain subdivisions of these early anthropoids exhibit no consistent scaling pattern relative to the overall brain size. Many gross cerebral features appear to have transformed in a mosaic fashion and probably have originated in platyrrhine and catarrhine anthropoids independently, involving multiple, independent instances of size increase, as well as some secondary decreases.