Cargando…

Life on the thermodynamic edge: Respiratory growth of an acetotrophic methanogen

Although two-thirds of the nearly 1 billion metric tons of methane produced annually in Earth’s biosphere derives from acetate, the in situ process has escaped rigorous understanding. The unresolved question concerns the mechanism by which the exceptionally marginal amount of available energy suppor...

Descripción completa

Detalles Bibliográficos
Autores principales: Prakash, Divya, Chauhan, Shikha S., Ferry, James G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703866/
https://www.ncbi.nlm.nih.gov/pubmed/31457094
http://dx.doi.org/10.1126/sciadv.aaw9059
Descripción
Sumario:Although two-thirds of the nearly 1 billion metric tons of methane produced annually in Earth’s biosphere derives from acetate, the in situ process has escaped rigorous understanding. The unresolved question concerns the mechanism by which the exceptionally marginal amount of available energy supports acetotrophic growth of methanogenic archaea in the environment. Here, we show that Methanosarcina acetivorans conserves energy by Fe(III)-dependent respiratory metabolism of acetate, augmenting production of the greenhouse gas methane. An extensively revised, ecologically relevant, biochemical pathway for acetotrophic growth is presented, in which the conservation of respiratory energy is maximized by electron bifurcation, a previously unknown mechanism of biological energy coupling. The results transform the ecological and biochemical understanding of methanogenesis and the role of iron in the mineralization of organic matter in anaerobic environments.