Cargando…
A critique of pure learning and what artificial neural networks can learn from animal brains
Artificial neural networks (ANNs) have undergone a revolution, catalyzed by better supervised learning algorithms. However, in stark contrast to young animals (including humans), training such networks requires enormous numbers of labeled examples, leading to the belief that animals must rely instea...
Autor principal: | Zador, Anthony M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6704116/ https://www.ncbi.nlm.nih.gov/pubmed/31434893 http://dx.doi.org/10.1038/s41467-019-11786-6 |
Ejemplares similares
-
COVID-19: a “black swan” and what animal breeding can learn from it
por: Simianer, Henner, et al.
Publicado: (2021) -
Critique of pure reason
por: Kant, Immanuel, 1724-1804
Publicado: (2007) -
Critique of Pure Reason
por: Kant, Immanuel, et al.
Publicado: (1999) -
Pathophysiology of periventricular leukomalacia: what we learned from animal models
por: Zaghloul, Nahla, et al.
Publicado: (2017) -
COVID-19 Pandemic: What Can the West Learn From the East?
por: Shokoohi, Mostafa, et al.
Publicado: (2020)